Solution:

(a) Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$,

$$
\begin{aligned}
P(\mathbf{X} ; \lambda) & =\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{X_{i}}}{X_{i}!} \\
& =\left(e^{-n \lambda}\right) \times\left(\lambda^{\sum_{i} X_{i}}\right) \times\left(\prod_{i=1}^{n} \frac{1}{X_{i}!}\right) \\
& =\exp \{\eta(\lambda) T(\mathbf{X})-B(\lambda)\} h(\mathbf{X})
\end{aligned}
$$

where $T(\mathbf{X})=\sum_{i} X_{i}, \eta(\lambda)=\log (\lambda), B(\lambda)=n \lambda$ and $h(\mathbf{X})=\prod_{i=1}^{n} \frac{1}{X_{i}!}$.
$P(\mathbf{X} ; \lambda)$ is exponential family distribution with a single parameter. Therefore, $T(\mathbf{X})=\sum_{i} X_{i}$ is sufficient and complete statistics.
(b) Let $T(\mathbf{X})=\sum_{i} X_{i}$, the moment generation function of $T(\mathbf{X})$

$$
\begin{aligned}
M_{T(\mathbf{X})}(s) & =\prod_{i=1}^{n} M_{X_{i}}(s)=\prod_{i=1}^{n} e^{\lambda\left(e^{t}-1\right)}=e^{n \lambda\left(e^{t}-1\right)} \\
& \Rightarrow \quad T(\mathbf{X}) \sim \operatorname{Poisson}(n \lambda)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E\left(B^{T(\mathbf{X})}\right) & =\sum_{k=0}^{\infty} B^{k} e^{-n \lambda} \frac{(n \lambda)^{k}}{k!} \\
& =e^{-n \lambda} \sum_{k=0}^{\infty} \frac{(B n \lambda)^{k}}{k!} \\
& =e^{-n \lambda} e^{B n \lambda} \sum_{k=0}^{\infty} e^{-B n \lambda} \frac{(B n \lambda)^{k}}{k!} \\
& =e^{n \lambda(B-1)}
\end{aligned}
$$

(c) Let $B=\frac{n-1}{n}$, using part (b),

$$
E\left(B^{T(\mathbf{X})}\right)=e^{n \lambda\left(\frac{n-1}{n}-1\right)}=e^{-\lambda}
$$

Therefore, $\left(\frac{n-1}{n}\right)^{T(\mathbf{X})}$ is an unbiased estimator of $e^{-\lambda} .\left(\frac{n-1}{n}\right)^{T(\mathbf{X})}$ is UMVUE, since $\left(\frac{n-1}{n}\right)^{T(\mathbf{X})}$ is a function of a complete and sufficient statistics, and is unbiased.
(d) Based on SLLN, $\bar{X}_{n} \xrightarrow{p} \lambda, e^{t}$ is a continues function, thus

$$
e^{-\bar{X}_{n}} \xrightarrow{p} e^{-\lambda} .
$$

(e) Based on CLT,

$$
\sqrt{n}\left(\bar{X}_{n}-\lambda\right) \xrightarrow{d} N(0, \lambda) .
$$

Following Delta method, $\sqrt{n}\left(h\left(\bar{X}_{n}\right)-h(\lambda)\right) \xrightarrow{d} N\left(0,\left[h^{\prime}(\lambda)\right]^{2} \lambda\right)$,

$$
\begin{aligned}
& \sqrt{n}\left(e^{-\bar{X}_{n}}-e^{-\lambda}\right) \xrightarrow{d} N\left(0,\left[\frac{\partial e^{-\lambda}}{\partial \lambda}\right]^{2} \lambda\right) \\
& \Rightarrow \\
& \sqrt{n}\left(e^{-\bar{X}_{n}}-e^{-\lambda}\right) \xrightarrow{d} N\left(0, e^{-2 \lambda} \lambda\right) \\
& \Rightarrow \\
& \sigma^{2}=e^{-2 \lambda} \lambda .
\end{aligned}
$$

Solution to Problem 2:

There is some leeway in the type of regression model that could be fit, but given the fact that the responses are counts that are relatively low, a Poisson regression model seems the best choice. The normal linear model does not give a horrible fit, but the nature of the response data leads on toward a Poisson model.

Of paramount importance is that the correct terms be included in the model. A 'weekend' indicator variable should be created and included in the model. The 'holiday' variable should be in the model as well, and there should be a 'weekend \times holiday' interaction term in the model, based on the president's suspicions about those factors' joint effects. The 'high temperature' variable should be in the model, and some type of non-linear form should be explored: Below I include it with a quadratic effect, but other explorations of form are possible. The 'date' variable should be included in the model, and the relevant hypothesis test is whether its associated marginal effect is positive.

R Output for Poisson regression model:

```
Call:
glm(formula = sales ~ weekend + holiday + weekend:holiday + hightemp +
    hightempsq + date, family = poisson)
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error z value & Pr (>|z|) \\
(Intercept) & -0.5536997 & 1.4619218 & -0.379 & 0.705 \\
weekendyes & 0.0779313 & 0.1073342 & 0.726 & 0.468 \\
holidayyes & 1.5276885 & 0.2266158 & 6.741 & \(1.57 \mathrm{e}-11\) & *** \\
hightemp & 0.0435623 & 0.0442320 & 0.985 & 0.325 & \\
hightempsq & -0.0003298 & 0.0003295 & -1.001 & 0.317 \\
date & 0.0330950 & 0.0057679 & 5.738 & \(9.59 \mathrm{e}-09\) \\
weekendyes:holidayyes & -0.3071655 & 0.3056174 & -1.005 & 0.315
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 194.46 on 99 degrees of freedom
Residual deviance: 100.57 on 93 degrees of freedom
AIC: 426.52
Number of Fisher Scoring iterations: 4
```

Before looking at model diagnostics, we immediately see that our preliminary model sheds some light on some of the president's suspicions: (1) Expected car sales are higher on holidays (given the other predictors in the model). This effect does not seems to depend on whether the holiday is on a weekend, since the interaction term is non-significant. In fact, the 'weekend' factor is not significant at all.
(2) As suspected, the later dates in a month do yield higher expected car sales, as the coefficient of date is significantly positive. (3) Based on this output, 'high temperature' does not seem to have an effect on car sales (in fact, even if we remove the quadratic term, 'high temperature' is non-significant). But see below...

Some diagnostic residual plots are given here. These exact diagnostic plots need not be done, but some type of diagnostics should be attempted.

Based on these plots, the model seems to fit well overall. There are not any serious outliers, although Observation 87 may be an influential case based on its large Cook's distance. (This is one of the days with a sales count of 16.) We fit the model without Observation 87 to see whether any substantive conclusions change:

```
glm(formula = sales ~ weekend + holiday + weekend:holiday + hightemp +
    hightempsq + date, family = poisson, subset = -87)
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & z value & Pr \((>|z|)\) \\
(Intercept) & -2.9221447 & 1.8725814 & -1.560 & 0.1186 \\
weekendyes & 0.0775512 & 0.1072520 & 0.723 & 0.4696 \\
holidayyes & 1.6057996 & 0.2301503 & 6.977 & \(3.01 e-12\) & *** \\
hightemp & 0.1104070 & 0.0553623 & 1.994 & 0.0461 & * \\
hightempsq & -0.0007987 & 0.0004054 & -1.970 & 0.0488 & \(*\) \\
date & 0.0351601 & 0.0058331 & 6.028 & \(1.66 e-09\) & *** \\
weekendyes:holidayyes & 0.3186657 & 0.4026778 & 0.791 & 0.4287
\end{tabular}
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 176.622 on 98 degrees of freedom
Residual deviance: 95.452 on 92 degrees of freedom
AIC: 416.78
Number of Fisher Scoring iterations: 5
```

Most conclusions remain the same, but there is one important difference: We see a marginally significant quadratic effect of high temperature on car sales. The major conclusions about the effects of 'date, 'holiday' and 'weekend' remain the same.

Solution to Problem 3:
(a) The parameter space is $\left\{R_{A}, R_{B}, R_{C}\right\}$ where

$$
\begin{aligned}
& R_{A}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6}\right) \\
& R_{B}=\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \\
& R_{C}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{2}\right)
\end{aligned}
$$

(b) We can evaluate the likelihood at each point of the parameter space:

$$
\begin{aligned}
& L\left(R_{A}\right) \propto\left(\frac{1}{3}\right)^{5}\left(\frac{1}{3}\right)^{11}\left(\frac{1}{6}\right)^{6}\left(\frac{1}{6}\right)^{7}=1.778663 \times 10^{-18} \\
& L\left(\underline{p}_{B}\right) \propto\left(\frac{1}{6}\right)^{5}\left(\frac{1}{3}\right)^{11}\left(\frac{1}{3}\right)^{6}\left(\frac{1}{6}\right)^{7}=3.557326 \times 10^{-18} \\
& L(\text { Rc }) \propto\left(\frac{1}{6}\right)^{5}\left(\frac{1}{6}\right)^{11}\left(\frac{1}{6}\right)^{6}\left(\frac{1}{2}\right)^{7}=5.935571 \times 10^{-20}
\end{aligned}
$$

Since P_{B} produces the highest likelihood, the MLE is

$$
\hat{R}_{M L}=R_{B}=\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right)
$$

c) By Bayes' Theorem,

$$
\begin{aligned}
& P(A \mid \text { data })= P(\text { data } \mid A) P(A) \\
& P(\text { data } \mid A) P(A)+P(\text { data } \mid B) P(B)+P(\text { data } \mid C) P(C) \\
&=\left(1.778663 \times 10^{-18}\right)\left(\frac{1}{3}\right) \\
&\left(1.778663 \times 10^{-18}\right)\left(\frac{1}{3}\right)+\left(3.557326 \times 10^{-18}\right)\left(\frac{1}{3}\right)+\left(5.935571 \times 10^{-20}\right)\left(\frac{1}{3}\right) \\
&= \frac{1.778663 \times 10^{-18}}{5.3953447 \times 10^{-18}} \approx 0.3297
\end{aligned}
$$

Solution to Problem 3 (continued)
(d) There is probably more than one way to do this, but perhaps the simplest in to use a likelihood ratio test involving

$$
\lambda=\frac{\text { likelihood with Rc plugged in }}{\text { likelihood with MLE plugged in }}
$$

Then for large samples, $-2 \ln \lambda$ is approximately X^{2} with $3-0=3$ d.f.* So we would reject Ho if $-2 \ln \lambda>X_{0,10,3}^{2}=6.25$

* Note there are 3 free parameters that are fixed by H_{0} and there are O free parameters that are fixed by R being in the general parameter space.
For these data,

$$
\begin{aligned}
\lambda & =\frac{\left(\frac{1}{6}\right)^{5}\left(\frac{1}{6}\right)^{11}\left(\frac{1}{6}\right)^{6}\left(\frac{1}{2}\right)^{7}}{\left(\frac{1}{6}\right)^{5}\left(\frac{1}{3}\right)^{11}\left(\frac{1}{3}\right)^{7}\left(\frac{1}{6}\right)^{7}}=\frac{3^{7}}{\left(2^{11}\right)\left(2^{6}\right)}=\frac{3^{7}}{2^{17}} \\
& \Rightarrow \lambda=0.0166855 \Rightarrow-2 \ln (\lambda)=8.19
\end{aligned}
$$

Since $8.19>6.25$, we reject H_{0} and conclude $R \neq R c$. The approximate P-value is 0.042 .
This is an approximate test, and the approximation may not be great, since the sample size is not huge.

Problem 4
(a)

$$
\Rightarrow \gamma_{1} \approx 0.5, \quad \gamma_{2} \approx 2.5, \quad \gamma_{3} \approx-1
$$

$\sigma \approx 0.5$. See attached output.
(b) Fitted reg. curve i scatter plot show model fits fine. Residual plot confirms this [random scatter \& constant var. okay]. see attached output.
(c) γ_{1} is mean of transmittal light as conc. increases. 95% cI for γ_{1} is $(-0.3,0.35)$ so we do not reject
$\mu(x)=\gamma_{1}+\gamma_{2} e^{\gamma_{3} x} \rightarrow 0$ at 5% level.
(d) FroM $S A S, \gamma_{1}+\gamma_{2}$ estimated to be 2.75 w/ 95% CI $(2.45,3.05)$.
(e) Testing $H_{0}: \tau_{1}=0$ gives p-value $=0.825$, we accept constant variance.
(f) AIC for proposed model $=2.9 \leftarrow$ lower!

Ac for quadratic $=4.3$
Nonlinear exponential mabel preferred!
Also quadratic mean increases transmitted light after conc ≈ 4 \Rightarrow non-inturtive!

The NLMIXED Procedure

Fit Statistics	
$\mathbf{- 2 ~ L o g ~ L i k e l i h o o d ~}$	-5.1
AIC (smaller is better)	2.9
AICC (smaller is better)	8.6
BIC (smaller is better)	4.9

$$
\begin{aligned}
& \text { (c) } \hat{\gamma}_{1}=0.0288,95 \%_{0} C I=(-0.292,0.344) \\
& \text { Accept } H_{0}: \gamma_{1}=0 \text { (6) } 5 \% \text { level } \\
& {\left[\begin{array}{l}
p-v a l \\
\end{array}=0.85\right]}
\end{aligned}
$$

(b) Matel fits well!

$$
\text { (b) Random scatten } 4 \text { constent. var. Okay! }
$$

The NLMIXED Procedure

Iteration History					
Iteration	Calls	$\begin{array}{r} \text { Negative } \\ \text { Log } \\ \text { Likelihood } \end{array}$	Difference	Maximum Gradient	Slope
14	46	-2.5614761	$6.026 \mathrm{E}-6$	0.000950	-0.00001
15	49	-2.5614761	$7.796 \mathrm{E}-9$	0.000069	$-1.73 \mathrm{E}-8$

NOTE: GCONV convergence criterion satisfied.

Fit Statistics	
$\mathbf{- 2 ~ L o g ~ L i k e l i h o o d ~}$	-5.1
AIC (smaller is better)	4.9
AICC (smaller is better)	14.9
BIC (smaller is better)	7.3

Parameter Estimates								
Parameter	Estimate	Standard Error	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$		dence its	Gradient
g1	0.02474	0.1555	12	0.16	0.8762	-0.3140	0.3635	-0.00005
g2	2.7263	0.1820	12	14.98	< 0001	2.3297	3.1229	-4.13E-6
g3	-0.6796	0.1204	12	-5.65	0.0001	-0.9419	-0.4173	0.000014
tau0	-3.4392	0.8732	12	-3.94	0.0020	-5.3418	-1.5367	-0.00002
tau1	0.06978	0.3088	12	0.23	0.8250	-0.6030	0.7425	-0.00007
$e)$	Acco		H_{0}	$\square^{\circ} \mathrm{C}$	$1=0$	7		nsten

Vavince okay!

Iteration History						
		$\begin{array}{r}\text { Negative } \\ \text { Log }\end{array}$	Maximum			

NOTE: GCONV convergence criterion satisfied.

Parameter Estimates								
Parameter	Estimate	Standard Error	DF	t Value	$\operatorname{Pr}>\|t\|$		dence its	Gradient
g1	2.6641	0.1331	12	20.02	<. 0001	2.3742	2.9540	-2.73E-9
g2	-1.2607	0.1252	12	-10.07	<. 0001	-1.5334	-0.9880	-1.6E-6
g3	0.1547	0.02403	12	6.44	<. 0001	0.1024	0.2071	-9.37E-6
sigma	0.2076	0.04238	12	4.90	0.0004	0.1153	0.3000	$-4.83 \mathrm{E}-7$

(f)

SAS code:
data light;
input light conc@@;

datalines;
2.860 .02 .640 .0
1.571 .01 .241 .0
0.452 .01 .022 .0
0.653 .00 .183 .0
0.154 .00 .014 .0
0.045 .00 .365 .0
;

* initial scatterplot to eyeball initial values;
proc sgscatter data=light; plot light* conc; run;
* main fit of model;
proc nlmixed data $=$ light;
barms gl $=0.5 \mathrm{~g} 2=2.5 \mathrm{~g} 3=-1$ sigma $=0.5$;
$\mathrm{mu}=\mathrm{g} 1+\mathrm{g} 2 * \exp (\mathrm{~g} 3 *$ conc $)$;
model light \sim normal(mu,sigma*sigma);
predict $\mathrm{g} 1+\mathrm{g} 2 * \exp (\mathrm{~g} 3 *$ conc $)$ out $=$ fit;
predict (light-mu)/sigma out=res;
estimate "mean at zero conc." g1+g2;

* fitted values \& raw data;

proc sgplot data=fit;
scatter $x=$ conc $y=$ light; series $x=$ conc $y=$ pred;

* Pearson resdual plot;
proc sgplot data=res; scatter $\mathrm{x}=$ conc $\mathrm{y}=$ pred;
* model with non-constant variance;
proc nlmixed data $=$ light;
parms g1 $=0.5 \mathrm{~g} 2=2.5 \mathrm{~g} 3=-1$ tau $0=-1$ tau1 $=0$;
$\mathrm{mu}=\mathrm{g} 1+\mathrm{g} 2 * \exp (\mathrm{~g} 3 *$ conc $)$;
sigma $=\exp \left(0.5^{*} \operatorname{tau} 0+0.5^{*} \operatorname{tau} 1^{*}\right.$ conc $)$;
model light \sim normal(mu,sigma*sigma);
* quadratic model;
proc nlmixed data=light;
parms g1 $=2.5 \mathrm{~g} 2=-1 \mathrm{~g} 3=0$ sigma $=0.5$;
$\mathrm{mu}=\mathrm{g} 1+\mathrm{g} 2 *$ conc $+\mathrm{g} 3 *$ conc* conc;
model light \sim normal(mu,sigma*sigma);
predict $\mathrm{g} 1+\mathrm{g} 2 *$ conc $+\mathrm{g} 3 *$ conc* conc out $=$ fit; predict (light-mu)/sigma out=res;

* quadratic model fit;

proc sgplot data=fit;
scatter $x=$ conc $y=$ light; series $\mathrm{x}=$ conc $\mathrm{y}=$ pred;

* quadratic model residuals;
proc sgplot data=res;
scatter $\mathrm{x}=$ conc $\mathrm{y}=$ pred;
run;

5. a) U_{1}, U_{2} i.i.d $\operatorname{Uniform}(0,1) . f\left(u_{1}, u_{2}\right)=1 ; 0<u_{1}, u_{2}<1$.

$$
Z_{1}=\cos \left(2 \pi U_{1}\right) \sqrt{-2 \log U_{2}}, \quad Z_{1}=\sin \left(2 \pi U_{1}\right) \sqrt{-2 \log U_{2}}
$$

Then since $-1 \leq \cos (\cdot) \leq 1$ on $[0,2 \pi]$ and $-\infty<\log (\cdot)<0$ on $(0,1)$ we have $-\infty<Z_{1}<\infty$ and $-\infty<Z_{1}<\infty$.

$$
\begin{aligned}
& \frac{Z_{1}}{Z_{2}}=\tan \left(2 \pi U_{1}\right) \Rightarrow U_{1}=\frac{1}{2 \pi} \arctan \left(\frac{Z_{1}}{Z_{2}}\right) \\
& Z_{1}^{2}+Z_{2}^{2}=-2 \log U_{2} \Rightarrow U_{2}=e^{-\frac{1}{2}\left(Z_{1}^{2}+Z_{2}^{2}\right)}
\end{aligned}
$$

Jacobian:

$$
\begin{gathered}
\left|\begin{array}{cc}
\frac{d u_{1}}{d z_{1}} & \frac{d u_{1}}{d z_{2}} \\
\frac{d u u_{2}}{d z_{1}} & \frac{d u_{2}}{d z_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2 \pi} \cdot \frac{1}{1+\left(\frac{z_{1}}{z_{2}}\right)^{2}} \cdot \frac{1}{z_{2}} & \frac{1}{2 \pi} \cdot \frac{1}{1+\left(\frac{z_{1}}{z_{2}}\right)^{2}} \cdot \frac{-z_{1}}{z_{2}^{2}} \\
e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)}\left(-z_{1}\right) & e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)}\left(-z_{2}\right)
\end{array}\right| \\
=\left(-\frac{1}{2 \pi} \cdot \frac{e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)}}{1+\left(\frac{z_{1}}{z_{2}}\right)^{2}}\right)-\left(\frac{1}{2 \pi} \cdot \frac{e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)}}{1+\left(\frac{z_{1}}{\left.z_{2}\right)^{2}} \cdot\left(\frac{z_{1}}{z_{2}}\right)^{2}\right.}\right) \\
=-\frac{1}{2 \pi} e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)}
\end{gathered}
$$

Thus

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)},-\infty<z_{1}, z_{2}<\infty
$$

i.e Z_{1}, Z_{2} are iid $N(0,1)$.
b) We know that If $X=\mathbf{m}+\mathbf{B Y}$ where $\mathbf{Y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
then $\mathbf{X} \sim$ Normal with $E(X)=\mathbf{m}+\mathbf{B} \boldsymbol{\mu}$ and $\operatorname{Var}(X)=\mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{\prime}$.
Thus for the present problem we have $Y \sim N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$.
Since $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{Y}$, we have $\hat{\boldsymbol{\beta}} \sim$ Normal with

$$
\begin{gathered}
E[\hat{\boldsymbol{\beta}}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{E}(\mathbf{Y})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\boldsymbol{\beta} \\
\operatorname{Var}[\hat{\boldsymbol{\beta}}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} * \sigma^{\mathbf{2}} \mathbf{I} * \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}
\end{gathered}
$$

c) $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I})$ and $\mathbf{V}=\boldsymbol{\mu}+\mathbf{A}^{\prime} \mathbf{Z}$. Then $\mathbf{V} \sim$ Normal with

$$
\begin{gathered}
E[\mathbf{V}]=\boldsymbol{\mu}+\mathbf{A}^{\prime} E[\mathbf{Z}]=\boldsymbol{\mu} \\
\operatorname{Var}[\mathbf{V}]=\mathbf{A}^{\prime} \operatorname{Var}[\mathbf{Z}] \mathbf{A}=\mathbf{A}^{\prime} \mathbf{I} \mathbf{A}=\mathbf{\Sigma}
\end{gathered}
$$

Thus if we have \mathbf{Z} then we can get \mathbf{V} by linear transformation.(See .doc file for R code and plot)
d) Let us write $\mathbf{S}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (here $\sigma=1$), also suppose \mathbf{A} is the Choleski composition of \mathbf{S}, then we can generate $\hat{\boldsymbol{\beta}}$ as follows:

- Generate 1000 copies of uniform U_{1} and U_{2}.
- Get 1000 copies of standard normal iid Z_{1} and Z_{2} by

$$
Z_{1}=\cos \left(2 \pi U_{1}\right) \sqrt{-2 \log U_{2}}, Z_{1}=\sin \left(2 \pi U_{1}\right) \sqrt{-2 \log U_{2}}
$$

Let $\mathbf{Z}=\binom{\mathbf{Z}_{1}}{\mathbf{Z}_{\mathbf{2}}}$.

- Get 1000 copies of $\hat{\boldsymbol{\beta}}$ by linear transformation $\boldsymbol{\beta}+\mathbf{A}^{\prime} * \mathbf{Z}$.
e) The covariance matrix for $\hat{\boldsymbol{\beta}}$ is $\mathbf{S}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.

From the R calculation $S=\left(\begin{array}{cc}1.50 & -0.25 \\ -0.25 & 0.05\end{array}\right)$.

- From the matrix the correlation coefficient is $\mathbf{- 0 . 9 1 2 8 7 0 9}$.
- In general, this correlation is free of both $\boldsymbol{\beta}$ and σ^{2}.
- Problem 6
(a) We expect no treatment differences at baseline; an interaction allows treatment differences to manifest gradually over time.
(b)

$$
\begin{aligned}
\frac{O R(t=1, m, u)}{O R(t=0, m, u)} & =\frac{e^{\beta_{0}+\beta_{1}+\beta_{2} m+\beta_{3} m+u}}{e^{\beta_{0}+\beta_{2} m+u}} \\
& =e^{\beta_{1}+\beta_{3} m}
\end{aligned}
$$

(c) I would recommend proc glimmix here as it is more stable than proc n/mixed. Also, we primarily used glimmix in class. If you inclucle "class treatment id" then SAS takes baseline to be treatment $=1$

See attached out put...

(d) See attached output. The 95% CI dob not include one at 9 months. Treatment 1 takes at least 6 months to signiticantly reduce odes of severe separation relative to Treatment 0 .
(e) A test of $H_{0}: \sigma^{2}=0$ yielles p-valve <0.0001.
(f) Yes, odes of "greaten separation" decrease oven time for both treatment "1" and "0."

However treatment "1" has smaller odds (lower probability) of greaten separation according to the plot.

The GLIMMIX Procedure

Model Information	
Data Set	WORK.TOENAIL
Response Variable	Response
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Variance Matrix Blocked By	ID
Estimation Technique	Residual PL
Degrees of Freedom Method	Containment

Class Level Information		
Class	Levels	Values
ID	294	1234679101112131516171819202122232425282930313335373839404145484950515253 54555658596061636465666869707273757678798081828384858687888990939495969799 101102104105106107108109110111114116117118119120123124125126127129131132133134 136137138139140141142143144145146149150151152154156157158160161162163164165166 168169170172173174175176177178180181182185186188189190191192193194195197198199 200201202203204205206207209210211212213214215216217218220221222223224225226227 228229230231232233234235237239240241242243245246247248249250251252254255256258 259260261262263264266269270271273275276277278279283284287288289290292293294295 297298300301302305306307308309310311312313314316319321324325327328330331332333 334335336337338340341343346350351352353354355356357358359360361363364365366367 368369372373374377381382383

Number of Observations Read	1908
Number of Observations Used	1908

Dimensions	
G-side Cov. Parameters	1
Columns in X	4
Columns in Z per Subject	1
Subjects (Blocks in V)	294
Max Obs per Subject	7

Optimization Information	
Optimization Technique	Dual Quasi-Newton
Parameters in Optimization	1
Lower Boundaries	1
Upper Boundaries	0

The GLIMMIX Procedure

Optimization Information	
Fixed Effects	Profiled
Starting From	Data

	Iteration History					
Iteration	Restarts	Subiterations	Objective Function	Max Change	Gradient	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5}$	8519.1940045	0.95204430	0.00027	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$	9475.4880329	0.47981014	0.000654	
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{5}$	10396.037151	0.20592568	$9.789 \mathrm{E}-7$	
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{4}$	10932.841553	0.07454117	0.000022	
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{3}$	11106.553815	0.02771427	$1.836 \mathrm{E}-6$	
$\mathbf{5}$	$\mathbf{0}$	$\mathbf{2}$	11147.350274	0.00667517	$2.223 \mathrm{E}-6$	
$\mathbf{6}$	$\mathbf{0}$	$\mathbf{2}$	11156.554733	0.00146360	$1.998 \mathrm{E}-7$	
$\mathbf{7}$	$\mathbf{0}$	$\mathbf{1}$	11158.606044	0.00032309	$6.36 \mathrm{E}-6$	
$\mathbf{8}$	$\mathbf{0}$	$\mathbf{1}$	11159.060897	0.00007112	$3.102 \mathrm{E}-7$	
$\mathbf{9}$	$\mathbf{0}$	$\mathbf{1}$	11159.161118	0.00001571	$1.792 \mathrm{E}-8$	
$\mathbf{1 0}$	$\mathbf{0}$	$\mathbf{1}$	11159.183261	0.00000347	$2.117 \mathrm{E}-8$	
$\mathbf{1 1}$	$\mathbf{0}$	$\mathbf{1}$	11159.188155	0.00000077	$5.59 \mathrm{E}-10$	
$\mathbf{1 2}$	$\mathbf{0}$	$\mathbf{0}$	11159.189239	0.00000000	$3.635 \mathrm{E}-6$	

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics	
-2 Res Log Pseudo-Likelihood	11159.19
Generalized Chi-Square	1489.85
Gener. Chi-Square / DF	0.78

The GLIMMIX Procedure

| Solutions for Fixed Effects | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Effect | Standard | | | | | | | |
| Estimate | Error | DF | t Value | Pr $>\|\mathbf{t}\|$ | Alpha | Lower | Upper | |
| Intercept | -0.7204 | 0.2370 | 292 | -3.04 | 0.0026 | 0.05 | -1.1868 | -0.2540 |
| Treatment | -0.02594 | 0.3360 | 1612 | -0.08 | 0.9385 | 0.05 | -0.6850 | 0.6331 |
| Month | -0.2782 | 0.03222 | 1612 | -8.64 | $<.0001$ | 0.05 | -0.3414 | -0.2150 |
| Treatment*Month | -0.09583 | 0.05105 | 1612 | -1.88 | 0.0607 | 0.05 | -0.1960 | 0.004307 |

Type III Tests of Fixed Effects				
Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	1612	0.01	0.9385
Month	1	1612	74.57	$<.0001$
Treatment*Month	1	1612	3.52	0.0607

Estimates									
Label	Estimate	Standard Error	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$	Alpha	Lower	Upper	Exponentiated Estimate
$\mathbf{m}=0$	-0.02594	0.3360	1612	-0.08	0.9385	0.05	-0.6850	0.6331	0.9744
$\mathbf{m}=3$	-0.3134	0.3093	1612	-1.01	0.3110	0.05	-0.9201	0.2932	0.7309
$\mathrm{m}=6$	-0.6009	0.3540	1612	-1.70	0.0898	0.05	-1.2953	0.09348	0.5483
$\mathrm{m}=9$	-0.8884	0.4493	1612	-1.98	0.0482	0.05	-1.7698	-0.00702	0.4113
$\mathrm{m}=12$	-1.1759	0.5704	1612	-2.06	0.0394	0.05	-2.2948	-0.05698	0.3086

Estimates		
Label	Exponentiated Lower	Exponentiated Upper
$\mathbf{m}=\mathbf{0}$	0.5041	1.8835
$\mathbf{m}=\mathbf{3}$	0.3985	1.3408
$\mathbf{m}=\mathbf{6}$	0.2738	1.0980
$\mathbf{m}=\mathbf{9}$	0.1704	0.9930
$\mathbf{m}=\mathbf{1 2}$	0.1008	0.9446

MI: P-value based on a mixture of chi-squares.
SAS code:
proc glimmix data=toenail; class id;
model Response=Treatment \mid Month $/$ dist=bin link $=$ logit s cl ;
random intercept / subject=id;
covtest zerog;
estimate " $\mathrm{m}=0$ " treatment 1 treatment* month $0 / \exp c l$; estimate " $m=3$ " treatment 1 treatment*month $3 / \operatorname{exp~cl}$; estimate " $m=6$ " treatment 1 treatment*month $6 / \operatorname{expcl}$; estimate " $m=9$ " treatment 1 treatment*month 9 / exp cl; estimate " $\mathrm{m}=12$ " treatment 1 treatment*month $12 / \operatorname{exp~cl}$;

Alternatively, one can use "random id;" to get the same output.
R code to get plot:

```
>m=seq(0,12,0.1)
> odds1=exp(-0.7204-0.02594*1-0.2782*m-0.09583*m*1)
> odds0}0=\operatorname{exp(-0.7204-0.02594*0-0.2782*m-0.09583*m*0)
> plot(m,odds1,type="l",ylim=c(0,0.5),xlab="months",ylab='odds")
> lines(m,odds0,lty=3)
```


