1. Suppose X1, Xa,..., X, are iid random variables with common pdf

flz)) =01 0<z <1, 6>0

(a) Prove that — > ;In(X;) is a cdmplete sufficient statistic for this family.

¥

((b) Derive the probability distribution of — 377 | In(X,).

: 1
(c) Find the UMVUE for 7 Does it attain the CRLB? Give a detailed reason why or why not.

! 1
Show that the UMV UE also happens to be the M LFE of g

(d) Find the MLE of § and derive the asymptotic probability distribution of the MLE.
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Problem 2) a) Side-by-side boxpicts show relatively symmetric distributions of salary for both males and
females. Normal Q-Q plots show some evidence of non-normality. A two-sample t-test comparing the
means is probably reasonable, but a distribution-free test might be preferred (or a t-test on some
appropriate transformation of the data}. in any case, the p-values are such that we do not conclude a
ditgerence in mean salaries between males and females.
t.test{yi ~ x1, var.equal=T)

- Two Sample t-test
t=10.7101, df = 63, p-value = 0.4803
alternative hypothesis: true difference in means is not equal to 0
t.test(yi~ x1)

Welch Two Sample t-test

t =0.7121, df = 58.886, p-value = 0.4792
altfémative hypothesis: true difference in means is not equal to 0
wilcox.test(yi ~ x1)

~ Wilcoxon rank sum test
W = 566, p-value = 0.5317
alternative hypothesis: true location shift is not equal to 0

[
b) An initial ordinary multiple linear regression fit shows some problems when the residual analysis is
done. The residuals plotted against the fitted values (and plotted against x2) show a parabolic trend.
There also appears to be non-constant error variance. We try a transformation; | tried including a
quadratic term, x2*2. That fixed the nonlinearity, but the nonconstant error variance was still evident. |
tried a natural log transformation of the response, which solved the problem nicely. Error variance now
appears constant, and the normal error assumption seems reasonable as well {one slight outlier is noted
froh the Q-Q plot).

L
We examine the t-tests to look at the effect of each predictor on the response. X3 is nonsignificant, but
x1 End x2 are significant in the chosen multiple regression model. We included an interaction term
x1*x2 to determine whether the effect of x2 on the response depends on sex. This was not significant,
so the interaction term was not used. The final model explains an extremely large percentage of the
variation in manthly salary {99.5% based on RA2). It appears that females have a higher mean salary
than males, for a given level of performance. And a higher performance rating yields a higher mean
salary.

The model assumptions are that the random error terms are independent and normally distributed with
mean zero and constant variance. The independence assumption is likely true since the data were taken
cross-sectionally and from a random sample. The normality assumption is verified from a Q-Q plot of
the residuals, and the constant variance assumption appears to hold based on the plot of residuals vs.
fitted values. After the model is transformed, the functional form of the model appears correct, based
on the residual analysis.

¢) Based on the t-test about 34, it appears that females have higher salaries than males, conditional on
performance rating. This is a different conclusion than was made in part (a), when no difference by sex
was found. It appears that accounting for performance rating alters whether sex affects mean salary. A
pair of boxplots of performance rating, separate by sex, indicates that males seem to have slightly higher
performance ratings than females. Perhaps this is the reason that the unconditional salary distributions
of males and females do not appear to differ in terms of center.




d) We use the same model as in part (b), except we include as a predictor an indicator variable that is 1
if x3 > 100, and 0 otherwise. The t-test about the coefficient of this indicator is nonsignificant (two-
sided P-value = 0.46), and in fact the estimated coefficient is negative, so the relevant one-sided P-value
would be 1 -0.23 =0.77. So we conclude that there may be no difference between the mean salary of
those who exceeded their personal budget and the mean salary of those who did not exceed their
personal budget. A limitation of this inference is that only 5 of the 65 employees in the sample had x3 >
100, so we are essentially comparing a sample group of only 5 people to a sample group of 60 people,
not ideal.

e) Answers for this one could vary, but a key is to recognize that formulas for the turning points can be
found by taking the derivative of the mean response function with respect to M, setting this equal to
zero, and using the quadratic formula to solve for the roots:

E(F):f""fB‘M*E’LML-k@;MS

: 2
Set ﬁE(I’) = By* 2B MR M = or
Qo‘vi-«s B M Msi-rj tzuowlraj{c ﬂrmu,/cg

Mo 2Bt el (eD
2.(3p)
=> M= (- -\p -3, ps >/(3E3>
ad (=B +\[pZ 35 >/(3 Ps)

The point estimates of the turning points could be obtained by plugging the estimates in:
(-b2-sqrt(b222-3*b1*b3))/(3*b3) = 8389.268
(-b2+sqrt(b272-3*b1*b3))/(3*b3) = 12026.75

Then a good way to obtain approximate 95% familywise Cls for the two turning points is to generate
many samples of “random error” values from a normal distribution with mean 0 and variance = MSE,
and add these to the fitted values of the cubic regression fit. This creates kind of parametric bootstrap
samples that use the normal error assumption. Then cubic regression could be fit on each bootstrap
sample, and estimated turning points could obtained for each bootstrap sample, and then 90%
bootstrap Cls for each turning point could be obtained by taking the 0.05 and 0.95 percentiles for each
turning-point empirical distribution. By the Bonferroni method, this creates (conservative) 95%
familywise intervals for the pair of turning points. My bootstrap intervals for an example run were:
(8259.971, 8545.605) for TP1, and (11864.63, 12169.89) for TP2.
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Questions and Answers
Pena Question in 2017 PhD Quals Exam

Pena Question: While driving to work one morning, I got stopped in a
traffic light at the intersection of Assembly Street and Gervais Street. I
noticed that the vehicle in front of me had a broken brake light. I looked at
the other vehicles that were also stopped (about 20 of them) and these other
vehicles did not have broken brake lights (the police will usually give you a
ticket if your brake lights are broken, so the event of a car having broken
brake lights is a rare event). I got to wondering: What is the percentage of
all vehicles being driven in Metropolitan Columbia have broken brake lights?
You are the statistician that is consulted about this problem.

(a) Describe a statistical sampling plan that could be done within a rea-
sonable amount of time at a reasonable cost to gather relevant data
to answer the primary question of inferring about the proportion, de-
noted by 6, of all vehicles being driven in MetroColumbia that have
broken brake lights. Explain why your design is appropriate and de-
scribe the type of sample data that you will obtain from this study.
In particular will your study have a fixed sample size, or will it have
a random sample size?

Solutions: There are several possible sampling plans for this prob-
lem, which could be justified to be appropriate based on their argu-
ments.

It could be fized sample size plan, with (not viable in practice) or
without replacement, and this could just be a simple random sample
or it could be a stratified random sample. Most likely the student
will use a simple random sample. An important detail to look for
in their answer is how the sampling process will be implemented in
practice and how they will decide on their sample size. They might
mention listing all cars registered in SC and sampling from them, but
this is not the most appropriate since we want those driven in Metro
Columbia. Most appropriate might be a scheme where cars passing
through sampled traffic intersections in Metro Columbia are sampled
and observed for broken brake lights. But there are many possible
ideas that could be put forward and so long as they could justify their
scheme in a reasonable manner, that will be fine.



A second possible sampling plan is where a fixed integer & is specified,
say, 20, and sampling continues until k£ vehicles with broken brake
lights are observed. Such random sample size sampling scheme may
be most appropriate in this case since the event of a broken brake
light is rare as indicated in the statement of the problem. If their
answer mentions the rarity of the event and uses a random sample size
sampling scheme, this is good since this indicates critical thinking by
the student.

Based on the data that you will obtain from your study, describe and
fully justify your procedure for performing inference (estimation and
constructing a confidence interval) about 6. You should describe the
appropriate statistical model that you will be postulating and must
justify why such a model is reasonable. You should describe the es-
timator that you will use and justify why such an estimator will be
good. For instance, will your estimator have desirable properties and
what are these desirable properties? You should also describe how you
will obtain a measure of the degree of precision of your estimator.

Solutions: The answer to this depends on the sampling scheme
stated in item (a). If a fixed sample size scheme was used, and the
student either mentions that even though it is without replacement
but that the number of cars in the population of interest will be large
so it could be assumed that it is sampling with replacement, hence a
Bernoulli or binomial model could be used, then this will be fine. If
a hypergeometric model is mentioned, then this is even better as this
recognizes that with sampling without replacement, the independence
needed under the binomial model may break down. The estimator
depends on whether a binomial model or a hypergeometric model is
assumed as the statistical model. In both cases, the proportion of
vehicles with damaged brake lights in the observed sample will be a
reasonable estimator as it will be the MM or ML estimator. That is, a
reasonable estimator will be X /n where X is the number with broken
brake lights among the n sampled vehicles.

If a random sample size scheme is used, then the appropriate statistical
model will be a negative binomial model, provided that either the stu-
dent mentions sampling with replacement or that independence could
be assumed since the population size is large. The MM estimator will
then be k divided by the number of sampled cars by noting that the
expected value of the number of cars sampled will be k/6. In fact, it



is also the ML estimator of # by noting that the likelihood function is
proportional to #¥(1 — §)N=F where N is the total sample size.

Estimates of the standard errors of the estimate will depend on which
sampling scheme and statistical model is assumed above, with the SE
estimate obtained via a plug-in procedure. Of course the student could
use asymptotic arguments to obtain their standard error estimate, and
this will be fine. The important aspect to look for is whether they
could determine how the standard error of their estimator will depend
on the sampling scheme and the statistical model assumed.

Based on past information about vehicles in Metropolitan Columbia,
a prior distribution about 6 is given by a beta distribution with pa-
rameters («, ) = (2,98), so that the prior density function is

1

m(0) = meﬂa - 0% 1{0< 0 <1}

If you are given this prior information, what will be your Bayes esti-
mator of 6 based on squared-error loss function?

Solutions: For the binomial and negative binomial statistical mod-
els, the posterior distribution of 8 will be proportional to

02+zfl (1 _ 0)98+n7x71

where x is the number with broken brake lights and n is the number
of vehicles sampled. The Bayes estimator of 6 based on squared-error
loss will then be the posterior mean, which will be

- 100+ 7
If a hypergeometric statistical model is assumed, then this leads to a
more complicated Bayes estimate since the prior will not anymore be
a conjugate prior. If a student decides this route and mentions using
numerical tools to obtain the posterior mean of #, then that shows
excellent understanding and should be given high credit.

Based on your sampling design, could your estimates obtained in (b)
and also in (c) be equal to zero? If you get an estimate of zero, will
this be a sensible or reasonable estimate?



Solutions: Under the binomial statistical model, and also the hyper-
geometric statistical model, the estimate could end up becoming zero.
For the negative binomial statistical model, it will never be equal to
zero. The student might mention in passing that in this scheme the
needed sample size could be quite large and that is an astute observa-
tion and should be viewed in very positive light. The Bayes estimate
will never be equal to zero.

An estimate of zero could still be argued as reasonable if the student
mentions that this does not truly imply that 6 is actually equal to zero,
but that this indicates that 6 has truly a small value. The student may
also state that this will be unreasonable since based on the statement
of the problem, at least one car was seen to have a broken brake light.
So it depends on how they will argue about the reasonableness of such
a zero estimate.

A certain Professor X, who is not so knowledgeable about the in-
tricacies of statistical modeling and inference, insisted that the best
sampling design for this study is to observe 500 randomly chosen cars
in Metropolitan Columbia. Upon making his observations (of course,
with the help of his willing students), he found that none of the 500
cars that were observed have broken brake lights. However, he still
claims that a conservative 95% confidence interval for # based on the
observed data is given by [0,3/500] = [0,.006]. Is he justified in his
claim? Justify your answer.

Solutions: This is a fixed sampling plan that was used by Professor
X. Under a binomial model, if Y is the number of vehicles with broken
brake lights among the 500 sampled vehicles, then Y has a binomial
distribution with parameters n = 500 and #. Under this model, the
probability of Y = 0 is going to be

Prg(Y = 0) = (1 — )5,

Thus, the set of §-values such that Prg(Y = 0) = (1 — 0)°%° > 0.05
are those which are less than or equal to 1 — (.05)'/590 = 0.000597.
The value of 3/500 = .006, whereas 4/500 = .008, hence the interval
[0,3/500] is indeed a conservative 95% CI for §# when Y = 0 is observed.
Thus, Professor X’s claim is justifiable.

Using the sample data obtained by Professor X and the prior distribu-
tion of @ in item (c), what would be a 95% Bayesian credible interval
for 67



Solutions: From the answer in (c¢) and the data in (e), the posterior
distribution of 8 is going to be a beta distribution with parameters
(2+y,984+n—y) = (2,598). Limits of a 95% credible interval for
are therefore

LOWER LIMIT = gbeta(.025, 2, 598) = 0.000405;

UPPER LIMIT = gbeta(.975,2,598) = 0.009266.

REMARK on Grading: I will be assigning a total of 10 points for each of
these 6 items for a total of 60 points. Then I'll just convert to a percentage
score. Graders may use a different scheme but the score for the whole
problem is one percentage score, e.g., 75%.



Problem 5) a} The likely reason is that there is some differences in growing conditions (field condition?
sunlight/shade amount?) that will affect the yield. A way to account for this variation is to make, say,
the regions of the field {or whatever affects the growing conditions) the blocks. The “random block
effects” assumption implies that the researcher believes the growing conditions used in this experiment
are a random selection from some large potential population of growing conditions.

PIYy= o+ s+, i=1,...4,j=1,.13.

1 = effect of i-th block

1, = effect of j-th treatment

Here, ji.. is a constant, p, ~independent N{O, 6,?), 1, =0, &,~independent N(0, 5%), and &, are
independent of ..

c) Source df F*
Blocks 3 MSB/MSE (a.k.a. MSB/MSBL.TR}
Treatments 12 MSTR/MSE {(a.k.a. MSTR/MSBL.TR)
Error {a.k.a. BlkxTrt) 36
Total 51

d) We would simultaneously test these 12 contrasts (where the “new” variety is labeled variety 13, say):
Ho: =13 =0 vs. Hyl 1~ 133 < 0, Ho: 2=tz = O vs. Hy: pz — i3 < 0, ...y Hot iz — a3 = O vs. Hal iz — 3 <
0. Agood approach might be to use a Scheffe multiple comparisons procedure, since this is designed to
test a large number of contrasts, (Using Dunnett’s procedure, which tests every treatment against one
control, would also be an excellent approach.} The Bonferroni method would be possible, but not ideal
here since there are a large number of contrasts, and the Bonferroni method would be quite
conservative. The Tukey method would not be ideal since we are not comparing all pairs of treatment
means (not even close to all pairs, in fact).

. H
Vs (T) = v (FL95) = g Lo ()

t=1

(G T Op ) = g4 (Y.J) = =\ v
) =l )= (3 0)
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6. Suppose X, Xs,..., X3 is a random sa,m?)le from a Gamma(2,0) distribution.

(a) Derive the size 0.05, UM P test for Hy: 6 < 1vs. Hy : 0 > 1 and derive the power function of
the test.

(b) Consider the testing problem Hy : § = 1 vs. H 10 # 1. Argue that an UMP test does not
exist in this case. Derive the exact size 0.05 Likelihood Ratio Test (LRT) for this problem.

(¢) In the same graph, plot the power function of the test in part (b) along with the power function
in part (a) and comment on the plot.

(d) Give a 95% confidence interval for 8 using a random sample of size 30, viz. X;, Xo, ..., X3a0.

(e) Suppose the true value of § is 1. Generate 30 random observations from Gamma(2, 1) distribu-
tion and construct the confidence interval derived in (d) from this generated sample observations.
Repeat this 10 times to generate 10 different confidence intervals. What is the observed coverage
probability (proportion of these 10 constructed intervals that actually covers the true value 6 = 1)?
Provide the code used for this simulation.

Comment on why the observed coverage probability may not be exactly equal to the confidence
coefficient 95% used in part (d).
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2. ¢) Both LRT and UMP attains size 0.05 at 6=1.
Since the UMP test is one sided and most powerful for Hy: 0 < 1 vs Hy: 8 > 1, it shows

more (highest possible) power than the LRT in # > 1 region.

But the LRT, being a test for Hy: 8 = 1 vs Hy: 6 # 1, will show power much greater than the
UMP above in 8 < 1 region.

Power plot comparing one sided UMP and two sided LR1
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R code:

theta=seq(0.1, 3, by=0.001)
n=length(theta)

x=betal=beta2=matrix(0,nrow=n.ncol=1)
x=matrix(0.05, nrow=n,ncol=1)



for(i in 1:n)

{betal[i]=1-pgamma(73.28368,60,scale=theta[i])}

for(i in 1:n)
{beta2[i]=pgamma(45.78632,60,scale=theta[i])+1-pgamma(76.1057,60.scale=theta[i])}
plot(theta,betal type="1",col="blue", xlab=expression(theta), ylab=expression(beta(theta)),
lwd=2, main="Power plot comparing one sided UMP and two sided LRT")
lines(theta,beta2,type="1",col="green", Iwd=1.7)

lines(theta,x,type="1", lty=2, col="red")

legend(2.5, 0.8, legend=c("UMP", "LRT", "size"),col=c("blue", "green", "red"), Ity=c(1,1.2),
cex=(0.8)



Dy R e e

@ T ~J Ga.*cwv.\a._ CGO 38)
(RN 5 Vi ST Ga_mw& C(,—',CD) \>
S

2 «
L0, 603\) 2 AS TRER2

CL'\*n\*\—q-Co
L = A axs, @0 o) = F6- 105 F

\ea, = G AEFInSs ©

Lo

= -q%
= Y -:hg.\C)S'«'-F)
QS \S

Hewee & as oo &+ Cad

N\

PR

- AP

36

| cay o V-
& I\D‘NO"“‘&M b wod vama of T, Fen

cvoose Ou iy

{SOQ C_th Akl _ .OD\S_ ) F_‘_\BUCJDO)-:- -OQS._
Tl©

o = S
o ()de =09 E

g ‘Q’T\e

2 . g AL Q—b



T ey T
R 7)) > v

~n
\W\@__a@é——aNCO)a@’)
Y-—QG N}\NCO)\)

QeI
X-C L \-QGD H'C{S"—‘@
P& (—\'qé L J2 8/

2
YIS Vv aniQunce S
10 we estiwmeds Vax @D by i :

Mon Vg Sludslels haewe

% - 4\'616) X RS

Q@ Q\,G\e Z ENR

’ -
AS%W\Q’*\ IR o
o _ackis | R+ \ReME |
B = ) 2
2




¢) The answer will depend om what confidence interval a student will construet.

Note that with 10 intervals the observed coverage probability (percentage of intervals that
actually contain 6=1) can be 70% (7 out of 10). 80% (8 out of 10), etc upto 100% (10 out of 10).

But never exactly 95%.

Following is an example of 10 generated intervals of form [76 :057 - 72632]

Rcode:

m=matrix(0,ncol=2, nrow=10)
T=matrix(sum(rgamma(30,2,1)).nrow=10,ncol=1)
for (iin 1:10)

{T[i]=sum(rgamma(30,2,1))}

for (1in 1:10)

{m[i,1]=T[i])/76.1057

m[i,2]=T[i]/45.78632}

m

- "Routput:

L] E2]
[1.].0.7439902 1.236655
[2.] 0.9381310 1.559355
[3.] 0.7579994 1.259941
[4.] 0.9216290 1.531925
15,1 0.8541957 1.419838
[6.] 0.7967779 1.324399
[7.] 0.6245257 1.038082
[8,] 0.7886819 1.310942
[9,] 0.7554194 1.255653
[10,] 1.0237514 1.701672

" Each row given a confidence interval for 6. Note that here 9 out of 10 intervals captured 6=1.
Hence observed coverage probability 90%.

Comment: The confidence coefficient 95% is associated with the sampling distribution of T, as
POe|ss  mmm]) = 0.95.

76.1057 45.78632
Here the observed coverage probability is observed as a relative frequency of capture out of only

10 intervals from 10 realizations of T. If we keep on constructing the intervals and try to see the
relative frequency of capture out of n intervals, the relative frequency will converge to true
probability 95% as n = oo,

In other words, if the number of generated confidence interval is large (much larger than mere
10) we will see observed coverage percentage getting close to nominal value 95%.
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