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Challenges

Sampling: Data collected at irregular

and subject-specific time points.

BLimited information for nonparametric;

Bnonnegative definite constraints.

Recent advances: Nearly balanced design / parametric model

#Nonparametric: Wu and Pourahmadi (03).
#Penalized MLE and Cholesky decomposion: Huang, et al.(06).

#Regularized large covariance and banding (Bickel and Levina, 07).

AFDA (Yao, Miiller and Wang 05a, b)
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% always positive definite; irregular designs; ywell-approximated.



Semiparametric models

BNoise processes have covariance structure:
var{e(t)} = o%(t) and corr{e(t),e(s)} = p(t,s;0)

% always positive definite; yirregular designs; Ywell-approximated.

Examples: #ARMA models; #Factor (random effects) models.

General strategy:

—Embed working correlation pg(s,t) into p(s,t,8).

—Improve efficiency even when p(s,t,0) is wrong.
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Varying-coefficient partially linear model

y(t) = x(t) a(t) +z(t)" B +(t),
Ba(t): p smooth functions B3: ¢ parameters.

cross-sectional: Zhang, Lee and Song (2002) and Fan and Huang (2005)
longitudinal: Scheike and Martinussen (2002), Sun and Wu (2005).

—partially linear models (Wahba, 1984; Engle, et al. 1984, Heckman, 1986;
Speckman, 1988; ...; Hardle, Liang and Gao, 2000),

—Varying-coefficient models and functional linear models (Hastie and
Tibshirani, 1993, Works by Wu, Rice, Fan, Huang, Miiller,...).
—semiparametric models studied by Lin and Carroll (2001) (with identify

link), Wang, Carroll and Lin (2005), and Huang and Zhang (2004).



Estimation of Regression Coefficients

Profile LS: Let y*(t) = y(t) — z(t)* 3. Then,

BmUse a (local) linear smoother to estimate «(t).

BmPlug-in &(-) and obtain synthetic linear model:
(I—-S)y=({I-S)ZB3+¢

where Z: the design matrix for z;(¢;;), and

S: smoothing matrix depends only on ¢;; and x;(%;;)



mApply profile weighted LS with a weight matrix W:

B={ZT(I-S)"W(I -S)Z}'Z2T (I - S)TW(I — S)y.

Covariance matrix: With D = Z" (I — S)"W(I — S)Z and V =
cov{Z’ (I — S)TWe},

cov{B|ti;, xi(t5), zi(t;;)} = D'VD '=I'(62,9),

Efficiency of B depends on W = diag{W,,--- ,W,, },



Sampling assumption
Data: a sample from a process {y(t),x(t),z(t)},t € [0,T].

Sampling points: Assume that J;, ¢« = 1,---,n are iid with

0 < E(J;) < oo, and for given J;, t;;, j = 1,---,J; are iid

according to a density f(?).

Counting process:
Lin and Ying (01);
see Fan and Li (04)
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A

V(B - B,) = vVnE, 6, + op(1),

—3n = 5 i dZi = XTWHZ; - X3},
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Sampling properties

Theorem 1: We have asymptotic representation,

A

V(B - B,) = vVnE, 6, + op(1),

—3n = 5 i dZi = XTWHZ; - X3},
_fn — %Zﬁzl{zz — Xi}TWigia

—e; = (&i(tin), -+ ,ei(tig)?t,

—X; = (W ()T (ta)xi(tan), - - 5 ©(tar) D (tag)xi(tis,) T

—TI(t) = Ex(t)xI(t), ©(t) = Ex(t)z!'(1).
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Asymptotic Normality — Parametric Part

V(B - B,) — N(0,A"'BA™Y),
—A = F{Z; — X1}"W{Z; — X;},
—B = E{21 — )~(1}TW1€1€{W1{21 — )~(1}

mif Wz — COV_1{€i|Xi(tij), Zi(tij)}v then A = B. Asymp var is Bo_l
BQ = E{Zl — )N(l}TCOV_l(&'ﬂXl7 Zl){Zl — )~(1}

—NMost efficient estimate among profile WLSE.

m\Working independent: W is diagonal.

—B Is still root n consistent.
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Asymptotic Normality — Nonparametric Part

Substituting 3 by 3 = an estimate for a(t)

Theorem 2. If nh®> = O(1), then

Vih(&(t) — alt) —%ugfﬂd(t)) 2, N(O,

where p; = [u'K(u)du, and v; = [ u'K?(u)du.



Asymptotic Normality — Nonparametric Part

Substituting 3 by 3 = an estimate for a(t)

Theorem 2. If nh®> = O(1), then

Vih(&(t) — alt) —%ughzd(t)) 2, N(O,

where p; = [u'K(u)du, and v; = [ u'K?(u)du.

The bias and variance of &(t) do not depend on W, since
ethe root n consistency of B does not depend on W

ethe estimator is intrinsically local (Lin and Carroll, 2000).
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Estimation of Covariance Function

Residuals: ri(a, ,3) — (7“7;1, e ,Tiji)T with
_ T T
rij(a, B) = yi(tij) — xi(tij)" alts;) — zi(tsj)" B,
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Estimation of Covariance Function

Residuals: ri(a, ,3) — (7“7;1, e ,TiJi)T with
_ T T
rij(a, B) = yi(tij) — xi(tij)" alts;) — zi(tsj)" B,

Pseudo-likelihood: Pretending €; ~ N(0, >3;), then,

n

b, B,0%,6) = — > log[Si] — 5 > rile )5 Mri(er, B)
i=1

i=1

Mlterate between estimation of («,3) and (02, 0).
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Estimation of o%(¢)

A

A

Residuals: Let ,,gij — rij(a,ﬂ).

Kernel estimator: Since o2(t;;) = E{e*(t)|t = t;,},

Zl 12 =1 1JKh1( IJ).
21:1 Zj:1Kh1( - ij)

where K, (z) = hy” 'K (x/h;) with a kernel K and a bandwidth

52(t) =

hi. (Ruppert, et al. 1997, Fan & Yao, 1998).
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Asymptotic Properties

Theorem 3. If c < nh? < C, and ¢ < h/h; < C, then

Vnh (6%(t) — a2(t) — b(t)) — N(0,v(t)).

b(t) = 1 {52(t) + 2207) } po and o(t) = ijé‘;bf’é()]}l;o




Asymptotic Properties

Theorem 3. If c < nh? < C, and ¢ < h/h; < C, then

Vnhi(6%(t) — o2(t) — b(t)) — N(0,v(t)).
bty = M {&2@) . 262(t)f(t)}lu2 o = D

2 f(t) fE(N)
B [ he asymptotic bias and variance do not depend on W.

— Use the residuals w/ working indep to estimate o(t).

mConsistent with our empirical experience

17



Estimation of correlation function

Challenges: ebivariate functions; epositive definite.

Correlation: Parametric form p(s,t,8).

Covariance: Semiparametric: >, = V;C;(0)V;.
—Vi = diag{a(til)v "o 70_(t7:=]1:)}’ C’L(g) — (p(tika til, 0))JixJi'




Estimation of correlation function

Challenges: ebivariate functions; epositive definite.

Correlation: Parametric form p(s,t,0).

Covariance: Semiparametric: >, = V;C;(0)V;.
—Vi = diag{a(til)v "o 70—(t7:=]1:)}’ C’L(g) — (p(tika til, 9))Jz'><=]z"

Specifications: Embed the working correlation pg(s,t;6q) into

the family of convex combinations:

p(s,t;0) = 1opo(s, t;00) + T1p1(S,t) + - + Tmpm(s, t).
where 0 = {60y, --- ,0,,,70, - ,Tm}, and 79+ -+ + 7, = 1.
Optimizing 6 always improves the efficiency of 3.
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Variance minimization

A

Aim: Choose 6 to minimize var(3) =I'(62,0).

— Improve the efficiency of var(3) even when misspecified.

Fully Nonparametric

Po(s:1.8,)

p,(s..0,)..p (s, )

Minimal generalized variance:

Choose 6 to minimize

0 = argming|T'(62,0)],

the volume of the confidence set:

(B-B)T"'(6%,6)(B-B8) <c



Quasi Maximum Likelihood

A

Maximize: ¢(é&, 3,67, 0) with respect to 8, namely

_%Z{log@(é’)\ +E VOOV 1f7’}

where V; = diag{G(ti1), - ,&(tiz)}, and £; = (741, -, 7s)7.



Quasi Maximum Likelihood

A

Maximize: ¢(é&, 3,67, 0) with respect to 8, namely

_%Z{log!(l@(@)\ +E VOOV 1f7’}

where V; = diag{G(ti1), - ,&(tiz)}, and £; = (741, -, 7s)7.

B\When p(s,t,0) is correctly specified, the QL may provide a good

estimate for 6.

B\When incorrectly specified, it improves efficiency for 3 using a

different criterion.
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Simulation Studies

Model: y(t) = x(t)T a(t) + z(t)1 B + (t).

Sample size: n = 50

Observation times ¢;;: Each individual has a set of ‘scheduled’

time points, {0,1,2,...,12}, each having 20% chance being
skipped. The observation times are random perturbations of

the scheduled times.



Simulation Studies

Model: y(t) = x(t)T a(t) + z(t)1 B + (t).

Sample size: n = 50

Observation times ¢;;: Each individual has a set of ‘scheduled’

time points, {0,1,2,...,12}, each having 20% chance being
skipped. The observation times are random perturbations of

the scheduled times.

Covariates: %x1(t) = 1 — intercept.

% (22(t), z1(t))!: bivariate normal with p = 0.5.
% 25(t): Bernouli with success prob 0.5, indep. of (x2(t), z1(t)).
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Model specifications

Coefficients: Parametric component: 3 = (1,2)%.

Nonparametric: a1(t) = /t/12, and «s(t) = sin(27t/12).



Model specifications

Coefficients: Parametric component: 3 = (1,2)%.

Nonparametric: a1(t) = /t/12, and «s(t) = sin(27t/12).

Error process £(t): a Gaussian process with zero mean,

o2(t) = 0.5exp(t/12), and corr(e(s),e(t)) = vplt=*!

for s # t with (v, p) = (0.85,0.9), (0.85,0.6) and (0.85, 0.3).

Number of Simulation: 1000 for each case.
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Performance of parametric components 3

Strong correlation:

Correct specification of p(s,t,0) ((v,p) = (0.85,0.9))

Method  SD Bias  MAD Median(Bias)
Indep.  47.780 -1.9730 30.066  -1.2802
True  25.061 -1.2565 17.473  -0.7676
QL 25.156 -1.2545 17.224  -0.7709
MGV 25205 -1.2040 17.250  -0.9126
*for 31; % Values multiplied by 1000.

Efficiency gain: (30.066/17.224)% ~ 3.
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Performance of Parametric Component 3

Weak correlation:

Correct specification of p(s,t,0) ((v, p) = (0.85,0.3))

Method SD Bias  MAD Median(Bias)

Indep. 46.991 -2.83990 32.010 -1.6817
True 40.123 -1.9687 27.104 -2.1143

QL 95.506 -6.7632 28222  -1.9187
MGV  40.389 -1.6740 27.442  -1.4153
H*for y; % Values multiplied by 1000.

Efficiency gain: 36%. MGV is more robust QL.
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Effect of misspecification of correlection structure

True: AMRA(1,1) with (v, p) = (0.85,0.9). Working: AR(1)

Method  SD Bias MAD  Med(Bias)

Optimization Indep. 47.780 -1.9730 30.066 -1.2802
Algorithm QL 31.857 -0.4859 19.975 -0.0837
MGV 33.121 -0.5275 21.449 0.0535

Grid QL 31.939 -0.4489 19.792 -0.0714
Search MGV 33.293 -0.5232 21.218 -0.2297

efficiency gain: (30.066/19.975)% ~ 2.3

Grid search: p over {0.05,0.1,0.25,0.5,0.75,0.9,0.95}.
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Performance of nonparametric part: &(t)

RASE: Given grid points {t,,: g =1,---

RASE{&;(-)} =

G
Z — ay( g)}2

Performance of &(-)

, 200}, define

~1/2

Correlation structure

()

Gia(+)

Independence
QL with ARMA(1,1)
QL with AR(1)

0.1340(0.0545)
0.1328(0.0517)
0.1618(0.0598)

0.1168(0.0324)
0.1153(0.0319)
0.1270(0.0360)
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Performance of variance: 54(t)

RASEs for 62(t)

Scenario I: Independence Scenario Il: Oracle
Bandwidth | Mean  Standard Error Mean  Standard Error
1 0.0886 0.0555 0.0899 0.0606

1.5 0.0809 0.0561 0.0834 0.0620
2.25 0.0777 0.0577 0.0815 0.0631

Independence: Use working indep correlation to estimate («, 3).

Oracle: Use the true value of (¢, 3).

28



Real data example

Data: % Multi-Center AIDS Cohort study; %283 homosexual men
infected with HIV during the period: 1984-1991.

Variable: —y(t): CD4 cell percentage;

—X1: PreCD4 cell percentage (standardized);

—Z7: smoking status. —Z5: age at infection (standardized).

Model: y(t) = Oél(t) -+ Oéz(t)Xl + 5121 + BQZQ + 8(t).

29



Bandwidth selection: Q-fold cross-validation

Q J;
CV(h) =Y "> ) {yiltyy) — 9-a, (t:j) }>,

k=1icdg j=1

where §_gq (%i;) is a fitted value for the i-subject at observed time

t;; with the data in dj, deleted, and () = 15.

Result: / = 18.1710, ~ 30% of range of t;;'s.



Bandwidth selection: Q-fold cross-validation

Q J;
CV(h) =Y "> ) {yiltyy) — 9-a, (t:j) }>,

k=1iedy j=1

where §_gq (%i;) is a fitted value for the i-subject at observed time

t;; with the data in dj, deleted, and () = 15.
Result: / = 18.1710, ~ 30% of range of t;;'s.

Estimation of ¢%(¢): The bandwidth can be easily chosen with

hi1 = 10.2587 by using plug-in method (Ruppert, Sheather and
Wand, 1995).
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(b) Estimate of ocl(t)

N
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Time

(d) Estimate of o(t)

0 20 40 60 80

Estimates of (v, p) and 3

Independence

Q

L MGV

B | 0.8726(1.1545)

B, | -0.5143(0.6110) 0.0567(0.4716)

0.6772(0.9970)

0.6302(1.0860)
-0.3647(0.5484)
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Prediction of individual trajectory

Individual data: collected at t =t1,--- ,t;.

Aim: To predict y(t) at t = t* with covariates x(¢*) and z(t*).

Notation: —y_ = (y(t1),--- ,y(t;))?

—p = (u(tr), -, pt))T with p(t) = x(O)Ta(t) + 2(t)T
—% = cov{(e(ty), - ,e(ts)T}

—c* = (c(ty, t*), -, ety t*)T.

Assumption: Joint normal.
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Prediction formula

E{yt)ly,t = p(t*) +c'35  y, — p) = g(t*)

A

var{ly(t)ly,} = o?(t*) — TS le* = 6(t*).

(a) Subject 1 (b) Subject 2

Predictive interval:

g(t*) + Zl_a/Q&Q(t*). g

=
o

If t* is an observed time point,

the prediction error is zero. s

10 25
0 20 40 60 80 0 20 40 60 80
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Summary

Model: y(t) = x(t) T a(t) + z(t)T B + ().

BmSemiparametric covariance o(s)o(t)p(s,t;0)

to facilitate longitudinal data structure.



Summary

Model: y(t) = x(t) T a(t) + z(t)T B + ().

BmSemiparametric covariance o(s)o(t)p(s,t;0)

to facilitate longitudinal data structure.

* Profile WLS for 3 and a(-)
% Kernel estimator for o%(t)

* QL and MGV approaches for 6
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Extensions

Fan and Wu (2007) established

— difference-based estimator for (3.
Bmsmoothness of a(-) with degree x;
Bno bandwidth selection involved:;

Brates O(n =" 4+ n~"1/2).

— Mrates of convergence for a(-);

Masymptotic normality of o(-)

— asymptotic normality of @ in the correlation matrix.
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Thank you!
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