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Water Level Task
405 Children
Ages 11-16

Measurement  angular error
Clock settings: 1,2,4,5,7,8,10,11



Piaget:

Age 4: no understanding
Ages 5-7: confused but learning
Age 9: should understand

Data: 405 vectors of 8 measurements

Problem: Fit a 3 component multivariate
mixture without assuming a parametric
form for the underlying model

fx  1f1x  2f2x  1  1  2f3x

x is an 8  1 vector of measurements



We will focus on 2-component mixtures

The Model: fx  f1x  1  f2x

The Data: x1, . . . ,xn m  1 vectors of
measurements

The Problem: Fit the model to the data,
making minimal assumptions on
f1 and f2.

The Issues: Identifiability and
computability

Want List: Estimates of f1, f2 and marginal
estimates of means, standard deviations,...



Identifiability
Suppose

fx  j1
m f1jxj  1  j1

m f2jxj

conditionally independent measurements
but not necessairly identically distributed.
No assumptions on the marginal
distributions.

Result: A k-component mixture is
identifiable provided m  mk where
mk  mk and 2mk  1  kmk  1.

k,mk : 2,3, 3,4, 4,5, 5,5. . .

Hall, Neeman, Pakyari, and Elmore (2005)



Conditional Independence

fx1,x2  f11x1f12x2  1  f21x1f22x2

EX1  11  1  21

EX2  12  1  22

VarX1  111
2  221

2  1211  212

VarX2  112
2  222

2  1212  222

CovX1,X2  1211  2112  22

Note: CovX1,X2  0 for scale mixtures.



Let S0 denote the estimate of the
covariance matrix assuming conditional
independence and let S denote the usual
sample covariance matrix.

Hope: S0 and S are close.

A check on conditional independence:

Bootstrap 95% confidence interval for m
m

0 ,

the ratio of maximum eigen values for S
and S0.

Want: 95% confidence interval to contain
1.



If the 95% confidence interval contains 1
then we proceed to fit the model assuming
conditional independence. Otherwise, we
may have identifiability problems.

A possibility: Transform Y  S0
1/2S1/2X

Then Y has the covariance structure
roughly corresponding to conditional
independence (at least conditionally
uncorrelated).

Fit the conditionally independent model to
the Y data. The Y data are like vectors of
scores made up of linear combinations of
the original measurements.



Water Level Data
Two analyses: first using all m  8
measurements and secondly using m  4
measurements corresponding to clock
settings 1,2,4,5 on the right side of the
clock.
m  8 measurements:
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m  4 measurements
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S 

233 63 4 37
63 714 96 20
4 96 581 15
37 20 15 354

eigen values: 772, 533, 361, 216

S0 

233 49 18 52
49 714 44 72
18 44 581 41
52 72 141 354

eigen values: 752, 569, 349, 213

Proceed with the analysis of the 4
measurement data.



Computability
Again, the discussion will be confined to 2
components.

L 
i1

n

j1
m f1jxij  1  j1

m f2jxij

If we know which component xij belongs to
then letting zi  1 if the first component
and 0 otherwise, the complete likelihood is:

Lc 
i1

n


j1

m

f1jxijzi f2jxij1zizi1  1zi 

"EM algorithm" next



Initial Values:

a. Use a 2-means clustering algorithm and
let zi

0  1 if the vector of measurements x i
is in the first cluster and 0 otherwise.

Then compute 0  avezi
0

b. Using zi
0 i  1, . . .n and 0 compute:

f1j
0u  1

0nh i1

n

zi
0K u  xij

h

Similarly for f2j
0u.



Updating and Iterations:
E step:

zi
t1 

tj1
m f1j

txij

tj1
m f1j

txij  1  tj1
m f2j

txij

"M step"

t1  avezi
t1

1j
t1 

 i1
n zi

t1xij
 i1
n zi

t1

f1j
t1u  1

t1nh i1

n

zi
t1K u  xij

h

Stopping: When change in t, and kj
t

k  1,2 and j  1, . . . ,m is sufficiently small.



Attractive since:

Fast to compute for general m, the number
of measurements, and k, the number of
components.

Performed well in simulation studies

Easy to determine features of the
component marginal distributions, eg.
means, medians, stdevs, pdfs, and cdfs.

Motivated by work of Bordes, Chauveau,
Vandekerkhove (2007)



Water Level Data, 4 measurements

Friedman Test:
S  237.40 DF  3 P  0.000

meas n Est med Sum of Ranks
1 405 -0.125 1079
2 405 4.125 1297
3 405 -3.625 755.5
4 405 -1.875 918.5

Suggesting that the 4 measures are not
identically distributed.

Eigen values for S0 and S suggest that we
need not reject the assumption of
conditionally uncorrelated measures.



Proceed with fitting the model to the data...
4 measurements, 3 components
Means:

Meas Comp 1 Comp 2 Comp 3
1 -1.9 0.2 21.7
2 8.5 2.0 32.0
3 -13.2 -1.8 -19.1
4 -6.2 -1.5 -31.9

Standard Deviations:
Meas Comp 1 Comp 2 Comp 3
1 15.9 6.4 25.8
2 28.5 6.4 54.5
3 23.0 6.5 56.0
4 23.4 6.9 17.3

Lambdas: .42, .49, .09



CDF plots for the first measurement
1 o’clock



CDF plots for the second measurement
2 o’clock



CDF plots for the third measurement
4 o’clock



CDF plots for the fourth measurement
5 o’clock



If we assume iid measures, then the 4
plots are combined:

Mean -1.8 -.1 -2.6
Stdev 45.8 4.9 20.7
Lambda .15 .44 .41



Other work: Qin and Leung (2006)
2 components and 3 measurements

Conditionally independent model:

fx  j1
3 fjxj  1  j1

3 gjxj

Exponential tilt:

gxj  fjxjexp0j  1jxj  2jxj2

The algorithm:
1. determine initial values for , 0j,1j,2j
j  1,2,3
2. use empirical likelihood to estimate Fj
3. use EM to estimate , 0j,1j,2j
j  1,2,3

L 
i1

n


j1

3

  1  e0j1jxj2jxj2 dFjxij



The Univariate Case

Identifiability:
Model:

fx  gx  1  1  gx  2

where g is symmetric about 0.

Hunter, Wang, Hett. (2007)
Bordes, Mottelet, Vandekerkhove (2006)

Computatability:
Very expensive. Algorithms only for 2
component case.

Two possiblities:



1. "EM" algorithm (Bordes,
Chauveau,Vandekerkhove (2007))
Suppose we have initial values for 1,2,
and g. .

E step

zi
t1 

tgtxi  1
t

tgtxi  1
t  1  tgtxi  2

t

"M step"
t1  avezi

t1 and 1
t1  avezi

t1xi

gt1u  1
2nh 

i1

n


j1

2

zij
t1K

u  xi   j
t1

h

 K
u  xi   j

t1

h 



2. Exponential Tilt Model

fx  g0xe0111x21x2 

1  g0xe0212x22x2

g0x is called the carrier density.

Motivated by Efron and Tibshirani (1996)
in the non-mixture case.

Computation: discretize the data, use a
kernel density estimator for g0x, and an
EM algorithm to estimate s. Computation
is carried out via a mixture of Poisson
regressions.

Computation is fast and works for k
components.



Example: Time between eruptions of Old
Faithful Geyser

Issues: identifiability, estimation of the
carrier...



The End


