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Water Level Task
405 Children
Ages 11-16

Measurement  angular error
Clock settings: 1,2,4,5,7,8,10,11



Piaget:

Age 4: no understanding
Ages 5-7: confused but learning
Age 9: should understand

Data: 405 vectors of 8 measurements

Problem: Fit a 3 component multivariate
mixture without assuming a parametric
form for the underlying model

fx  1f1x  2f2x  1  1  2f3x

x is an 8  1 vector of measurements



We will focus on 2-component mixtures

The Model: fx  f1x  1  f2x

The Data: x1, . . . ,xn m  1 vectors of
measurements

The Problem: Fit the model to the data,
making minimal assumptions on
f1 and f2.

The Issues: Identifiability and
computability

Want List: Estimates of f1, f2 and marginal
estimates of means, standard deviations,...



Identifiability
Suppose

fx  j1
m f1jxj  1  j1

m f2jxj

conditionally independent measurements
but not necessairly identically distributed.
No assumptions on the marginal
distributions.

Result: A k-component mixture is
identifiable provided m  mk where
mk  mk and 2mk  1  kmk  1.

k,mk : 2,3, 3,4, 4,5, 5,5. . .

Hall, Neeman, Pakyari, and Elmore (2005)



Conditional Independence

fx1,x2  f11x1f12x2  1  f21x1f22x2

EX1  11  1  21

EX2  12  1  22

VarX1  111
2  221

2  1211  212

VarX2  112
2  222

2  1212  222

CovX1,X2  1211  2112  22

Note: CovX1,X2  0 for scale mixtures.



Let S0 denote the estimate of the
covariance matrix assuming conditional
independence and let S denote the usual
sample covariance matrix.

Hope: S0 and S are close.

A check on conditional independence:

Bootstrap 95% confidence interval for m
m

0 ,

the ratio of maximum eigen values for S
and S0.

Want: 95% confidence interval to contain
1.



If the 95% confidence interval contains 1
then we proceed to fit the model assuming
conditional independence. Otherwise, we
may have identifiability problems.

A possibility: Transform Y  S0
1/2S1/2X

Then Y has the covariance structure
roughly corresponding to conditional
independence (at least conditionally
uncorrelated).

Fit the conditionally independent model to
the Y data. The Y data are like vectors of
scores made up of linear combinations of
the original measurements.



Water Level Data
Two analyses: first using all m  8
measurements and secondly using m  4
measurements corresponding to clock
settings 1,2,4,5 on the right side of the
clock.
m  8 measurements:
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m  4 measurements
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S 

233 63 4 37
63 714 96 20
4 96 581 15
37 20 15 354

eigen values: 772, 533, 361, 216

S0 

233 49 18 52
49 714 44 72
18 44 581 41
52 72 141 354

eigen values: 752, 569, 349, 213

Proceed with the analysis of the 4
measurement data.



Computability
Again, the discussion will be confined to 2
components.

L 
i1

n

j1
m f1jxij  1  j1

m f2jxij

If we know which component xij belongs to
then letting zi  1 if the first component
and 0 otherwise, the complete likelihood is:

Lc 
i1

n


j1

m

f1jxijzi f2jxij1zizi1  1zi 

"EM algorithm" next



Initial Values:

a. Use a 2-means clustering algorithm and
let zi

0  1 if the vector of measurements x i
is in the first cluster and 0 otherwise.

Then compute 0  avezi
0

b. Using zi
0 i  1, . . .n and 0 compute:

f1j
0u  1

0nh i1

n

zi
0K u  xij

h

Similarly for f2j
0u.



Updating and Iterations:
E step:

zi
t1 

tj1
m f1j

txij

tj1
m f1j

txij  1  tj1
m f2j

txij

"M step"

t1  avezi
t1

1j
t1 

 i1
n zi

t1xij
 i1
n zi

t1

f1j
t1u  1

t1nh i1

n

zi
t1K u  xij

h

Stopping: When change in t, and kj
t

k  1,2 and j  1, . . . ,m is sufficiently small.



Attractive since:

Fast to compute for general m, the number
of measurements, and k, the number of
components.

Performed well in simulation studies

Easy to determine features of the
component marginal distributions, eg.
means, medians, stdevs, pdfs, and cdfs.

Motivated by work of Bordes, Chauveau,
Vandekerkhove (2007)



Water Level Data, 4 measurements

Friedman Test:
S  237.40 DF  3 P  0.000

meas n Est med Sum of Ranks
1 405 -0.125 1079
2 405 4.125 1297
3 405 -3.625 755.5
4 405 -1.875 918.5

Suggesting that the 4 measures are not
identically distributed.

Eigen values for S0 and S suggest that we
need not reject the assumption of
conditionally uncorrelated measures.



Proceed with fitting the model to the data...
4 measurements, 3 components
Means:

Meas Comp 1 Comp 2 Comp 3
1 -1.9 0.2 21.7
2 8.5 2.0 32.0
3 -13.2 -1.8 -19.1
4 -6.2 -1.5 -31.9

Standard Deviations:
Meas Comp 1 Comp 2 Comp 3
1 15.9 6.4 25.8
2 28.5 6.4 54.5
3 23.0 6.5 56.0
4 23.4 6.9 17.3

Lambdas: .42, .49, .09



CDF plots for the first measurement
1 o’clock



CDF plots for the second measurement
2 o’clock



CDF plots for the third measurement
4 o’clock



CDF plots for the fourth measurement
5 o’clock



If we assume iid measures, then the 4
plots are combined:

Mean -1.8 -.1 -2.6
Stdev 45.8 4.9 20.7
Lambda .15 .44 .41



Other work: Qin and Leung (2006)
2 components and 3 measurements

Conditionally independent model:

fx  j1
3 fjxj  1  j1

3 gjxj

Exponential tilt:

gxj  fjxjexp0j  1jxj  2jxj2

The algorithm:
1. determine initial values for , 0j,1j,2j
j  1,2,3
2. use empirical likelihood to estimate Fj
3. use EM to estimate , 0j,1j,2j
j  1,2,3

L 
i1

n


j1

3

  1  e0j1jxj2jxj2 dFjxij



The Univariate Case

Identifiability:
Model:

fx  gx  1  1  gx  2

where g is symmetric about 0.

Hunter, Wang, Hett. (2007)
Bordes, Mottelet, Vandekerkhove (2006)

Computatability:
Very expensive. Algorithms only for 2
component case.

Two possiblities:



1. "EM" algorithm (Bordes,
Chauveau,Vandekerkhove (2007))
Suppose we have initial values for 1,2,
and g. .

E step

zi
t1 

tgtxi  1
t

tgtxi  1
t  1  tgtxi  2

t

"M step"
t1  avezi

t1 and 1
t1  avezi

t1xi

gt1u  1
2nh 

i1

n


j1

2

zij
t1K

u  xi   j
t1

h

 K
u  xi   j

t1

h 



2. Exponential Tilt Model

fx  g0xe0111x21x2 

1  g0xe0212x22x2

g0x is called the carrier density.

Motivated by Efron and Tibshirani (1996)
in the non-mixture case.

Computation: discretize the data, use a
kernel density estimator for g0x, and an
EM algorithm to estimate s. Computation
is carried out via a mixture of Poisson
regressions.

Computation is fast and works for k
components.



Example: Time between eruptions of Old
Faithful Geyser

Issues: identifiability, estimation of the
carrier...



The End


