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Smoothing spline nonparametric regression

A standard smoothing spline model assumes that

yi = f (ti) + εi , i = 1, · · · , n

yi are observations

f is an unknown function belonging to a model space

ti are design points

εi are random errors with εi
iid∼ N(0, σ2)
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General smoothing spline nonparametric regression

In many applications observations of the mean function are
made indirectly. Wahba (1990) considered the following general
smoothing spline model

yi = Li f + εi , i = 1, · · · , n

yi are observations

f is observed through a known bounded linear functional Li

Simple smoothing spline model is a special case with
Li f = f (ti), Li is called an evaluation functional

Other interesting examples of Li are Li f =
∫ b

a wi(t)f (t)dt
and Li f = f ′(ti)

εi are random errors with εi
iid∼ N(0, σ2)
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Motivations

The nonlinear nonparametric regression is necessary because

in some experiments f may only be observed indirectly
through a nonlinear functional;

nonlinear transformations are useful tools to relax
constraints on f .
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Example 1: Remote sensing

The satellite up-welling radiance measurements Rv are related
to the underlying atmospheric temperature distribution g
through

Rv (g) = Bv (g(xs))τv (xs)−
∫ xs

x0

Bv (g(x))τ ′v (x)dx

x is some monotone transformation of pressure p

τv (x) is the transmittance of the atmosphere above x at
wavenumber v

Bv (g) = c1v3/[exp(c2v/g)− 1] with known constants c1

and c2

The goal is to estimate g as a function of x using noisy
observations of Rv (g)

Rv (g) is nonlinear in g
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Example 2: Positive inverse problem

For simplicity, suppose that observations are generated by the
Fredholm’s integral equation of the first kind

yi =

∫
K (ti , s)f (s)ds + εi , i = 1, · · · , n

K is a known impulse response function
εi are measurement errors
The goal is to recover f through observations
Often f is known to be positive. We can relax the positive
constraint by a simple transformation f = exp(g) and then
estimate g. The transformed model is nonlinear in g
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Example 3: Extensions of additive models

An additive model assumes that

yi = α + f1(t1i) + · · ·+ fr (tri) + εi , i = 1, · · · , n

A simple extension is to allow nonlinear functionals for some or
all components:

yi = α +N 1
i g1 + · · ·+N r

i gr + εi , i = 1, · · · , n,

where N k are known linear or nonlinear operators.

For example, if f1 is known to be strictly increasing, then
f ′1(t) > 0. Let f ′1(t) = exp(g1(t)). We can re-express f1 as
f1(t) = f1(0) +

∫ t
0 exp(g1(s))ds. The constant f1(0) is absorbed

by α. Therefore we have N 1g1 =
∫ x1

0 exp(g1(t))dt .
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Nonlinear nonparametric regression models

We define a general smoothing spline nonlinear nonparametric
regression model (SSNNRM) as

yi = Ni(g1, · · · , gr ) + εi , i = 1, · · · , n

yi are observations

Ni are known nonlinear functionals

g1, · · · , gr are unknown functions

εi are random errors with εi
iid∼ N(0, σ2)
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Model spaces

To deal with different kind of covariates in a unified fashion, we
assume that, for each k = 1, · · · , r ,

The domain Tk for function gk is an arbitrary set

gk ∈ Hk , where Hk is a reproducing kernel Hilbert space
(RKHS) on a domain Tk

Examples of model spaces and domains are polynomial
splines on [0, 1], periodic spline on the unit circle, thin-plate
splines on Euclidean d-space, and tensor product splines
on tensor products of domains
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Constructions of model spaces

We further assume that

Hk = Hk0 ⊕Hk1

where
Hk0 = span{φk1(t), · · · , φkmk (t)}

contains functions which are not penalized, and Hk1 is a RKHS
with reproducing kernel (RK) Rk1(s, t).
Denote Pk1 as the projection operator onto the subspace Hk1

in Hk . Then ||Pk1gk ||2 measures the departure of gk from Hk0.
The choices of Hk0, Hk1 and Pk1 depend on

domain of the function T
prior knowledge such as smoothness
purpose of the study

For example, for a cubic spline, Hk0 = span{1, t},
Rk1(s, t) =

∫ 1
0 (s − u)+(t − u)+du, ||Pk1gk ||2 =

∫ 1
0 (g′′

k (s))2ds.
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Penalized least squares

We estimate g1, · · · , gr by minimizing the following penalized
least squares

PLS =
n∑

i=1

(yi −Ni(g1, · · · , gr ))
2 + nλ

r∑
k=1

θk ||Pk1gk ||2

The first part measures the goodness-of-fit
The second part is a penalty to the departure from spaces
Hk0
λ and θk are smoothing parameters which balance the
trade-off between the goodness-of-fit and the penalty
Under some regularity conditions, the PLS has a unique
minimizer
For linear operators, the solutions to the PLS fall into a
finite dimensional space. No longer holds in general for
SSNNRMs
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Exact solution for a special case

Assume that Ni(g1, · · · , gr ) depends on gk through Lkigk only

Ni(g1, · · · , gr ) = ηi(L1ig1, · · · ,Lrigr ), i = 1, · · · , n

ηi are known nonlinear functions
L1i , · · · ,Lri are bounded linear operators

Theorem . The solution to the PLS can be represented as

ĝk (t) =

mk∑
i=1

dkiφki(t) +
n∑

j=1

θkckjξkj(t), k = 1, · · · , r

ξki = Pk1LkiRk1

We need to solve coefficients dki and ckj . For fixed
smoothing parameters, standard nonlinear optimization
procedures such as the Gauss-Newton and
Newton-Raphson methods can be used
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Approximation

For the general SSNNRM the solutions to the PLS do not
fall into a finite dimensional space

We first consider the case of r = 1

Let g− be current estimate of g. Assume that the Fréchet
differential of Ni with respect to g evaluated at g− exists
and is bounded

Denote
Di = ∂Ni/∂g|g=g−

We approximate Nig by its first order Taylor expansion at
g−:

Nig ≈ Nig− +Di(g − g−)
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Extended Gauss-Newton algorithm

Then we can approximate the original SSNNRM by

ỹi = Dig + εi , i = 1, · · · , n

where ỹi = yi −Nig− +Dig−.

We minimize
n∑

i=1

(ỹi −Dig)2 + nλ||P1g||2

to get a new estimate of g.

Since Di is a linear and bounded functional, the solution to
the above PLS falls in a finite dimensional space

Thus the solution can be represented as a linear
combination of basis and representers. Coefficients can be
solved by a nonlinear optimization procedure
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Backfitting

When r > 1, we use a Gauss-Seidel-type algorithm to estimate
functions iteratively one at a time.

Algorithm
1 Initialize: gi = g0

i , i = 1, · · · , r
2 Cycle: for k = 1, · · · , r , 1, · · · , r , · · · , conditional on the

current estimates of g1, · · · , gk−1, gk+1, · · · , gr , update gk

as the minimizer of

n∑
i=1

(yi −Ni(g1, · · · , gk−1, gk , gk+1, · · · , gr ))
2 + nλ||Pk1gk ||2

3 Continue step (2) until convergence
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Smoothing parameters and inference

As usual, the smoothing parameters are critical to the
performance of spline estimates

The generalized cross validation (GCV) and the
generalized maximum likelihood (GML) methods were
extended to estimate smoothing parameters in SSNNRMs

Smoothing parameters are estimated iteratively at each
iteration

Bayes models were constructed for SSNNRMs which
allows us to construct approximate Bayesian confidence
intervals

Bootstrap method can also be used to construct
confidence intervals

The estimation and inference methods performed well in
simulations
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Cross validation

Let g[v ]
1 , · · · , g[v ]

r be minimizers of of the PLS without the v th
observation

∑
i 6=v

(yi −Ni(g1, · · · , gr ))
2 + nλ

r∑
k=1

θk ||Pk1gk ||2

The ordinary leave-out-one cross validation method selects
λ/θ1, · · · , λ/θr as minimizers of the following score

OCV (λ, θ) =
1
n

n∑
v=1

(yv −Nv (g[v ]
1 , · · · , g[v ]

r ))2
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Leaving-out-one lemma

Lemma For fixed v and z, let h[v , z] be the vector of functions
that minimizes

(z−Nv (g1, · · · , gr ))
2+

∑
i 6=v

(yi−Ni(g1, · · · , gr ))
2+nλ

r∑
k=1

θk ||P1kgk ||2

Then
h[v ,Nv (g[v ]

1 , · · · , g[v ]
r )] = (g[v ]

1 , · · · , g[v ]
r )
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Generalized cross validation

The OCV criterion can be approximated by

V (λ, θ) =
1
n

n∑
i=1

(yi −Ni(g1, · · · , gr ))
2/

[
1
n

tr(I − A)

]2

aij = ∂Ni(h[i , yj ])/∂yj =
∑r

u=1
∂Ni (g1,··· ,gr )

∂gu

∂gu
∂yj

A = (aij)
n
i,j=1

Function V is called the GCV criterion. Its minimizer is
called the GCV estimate of the smoothing parameter
It is difficult to compute aij directly due to nonlinear
functionals
We approximate aij by replacing gi with their current
estimates
This leads to an iterative procedure which estimates
smoothing parameters at each iteration

31 / 61



Smoothing Spline Models Nonlinear Nonparametric Regression Models Estimation Examples Conclusions

Linear approximation

At each iteration, the SSNNRM is approximated by

ỹi = Dig + εi , i = 1, · · · , n

Di = ∂Ni/∂g|g=g−

ỹi = yi −Nig− +Dig−
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Bayes model

Assume a prior distribution for g as

G(t) =
m∑

i=1

diφi(t) + τ1/2Z (t)

di
iid∼ N (0, a)

Z (t) is a mean zero Gaussian process with
Cov(Z (s), Z (t)) = R1(s, t)

Assume that observations are generated from the following
model

ỹi = DiG + εi , i = 1, · · · , n
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ỹi = DiG + εi , i = 1, · · · , n

34 / 61



Smoothing Spline Models Nonlinear Nonparametric Regression Models Estimation Examples Conclusions

Generalize Maximum Likelihood (GML) method

Since Di are linear operators, the posterior mean of the
Bayes model equals the solution to the PLS at this iteration

Similar arguments as in the linear case leads to the
following GML criterion

M(λ, θ) =
1
n

∑n
i=1(yi −Ni(g1, · · · , gr ))

2[
det+(I − A)

]1/(n−
Pr

k=1 mk )

where det+ is the product of nonzero eigenvalues

The minimizer to the GML criterion is called the GML
estimates of the smoothing parameters

Since aij are calculated based on current estimates, as
GCV, the GML is an iterative procedure
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Linear approximation at convergence

At convergence, the SSNNRM is approximated by

ỹ∗
i = D∗

i g + εi , i = 1, · · · , n

ĝ is the estimate at convergence

D∗
i = ∂Ni/∂g|g=ĝ

ỹ∗
i = yi −Ni ĝ +D∗

i ĝ
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Bayesian model at convergence
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Bayesian confidence intervals

Since D∗
i ’s are linear operators, the posterior mean of the

Bayesian model equals ĝ(t)

Posterior variances and Bayesian confidence intervals can
be calculated

Bayesian confidence intervals can constructed using
posterior variances

The performance of Bayesian confidence intervals
depends largely on the accuracy of the linear
approximation. When curvature of Ni with respect to g is
high, modification is necessary to improve coverage

Simulations indicate that Bayesian confidence intervals
perform reasonably well when curvature is not high

Bootstrap confidence intervals can also be constructed
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R package

We have developed a generic R function, nnr , for fitting
SSNNRMs. nnr is one function in the ASSIST package which
can be downloaded from

http://cran.r-project.org/

Details and examples can be found in the manual of the
ASSIST package downloadable from

http://www.pstat.ucsb.edu/faculty/yuedong
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Fit a positive function

Consider a nonparametric regression model

yi = f (ti) + εi , ti ∈ [0, 1], i = 1, · · · , n

Positive constraint: f > 0
We may use one of the following two transformations to
enforce positivity:

exponential transformation f = exp(g)
square transformation f = g2

Then we can model the unconstrained function g by a
spline model
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A simple simulation

n <- 50
x <- seq(0,1,len=n)
y <- exp(-6*x)+.1*rnorm(n)

# fit a cubic spline
ssrfit <- ssr(y~x, cubic(x))

# fit the square transformed model
nnrfit1 <- nnr(y~g(x)**2,

func=g(u)~list(~u,cubic(u)),
start=list(g=sqrt(abs(y))))

# fit the exponential transformed model
nnrfit2 <- nnr(y~exp(g(x)),

func=g(u)~list(~u,cubic(u)),
start=list(g=log(abs(y)+0.001)))
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Fit
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Term structure of interest rates

The term structure of interest rates is a concept central to
economic and financial theory. Consider a set of n coupon
bonds from which the interest rate term structure is to be
inferred. Denote the current time as zero. Then the pricing
model is

yi =

mi∑
j=1

cijδ(tij) + εi , i = 1, · · · , n

yi is the current price of bond i

cij is the payment paid at a future time tij ,
0 < ti1 < · · · < timi

δ(t) is the discount function: price of a dollar delivered at
date t

εi are iid random errors with mean zero and variance σ2

44 / 61



Smoothing Spline Models Nonlinear Nonparametric Regression Models Estimation Examples Conclusions

Constraints

The discount function δ is required to be

δ(0) = 1

positive

decreasing

It is difficult to estimate δ directly due to these constraints.
Often δ is represented by

δ(t) = exp(−
∫ t

0
g(s)ds)

The transformation takes care of all constraints on δ

g(s) ≥ 0 is called the forward rate

Replacing δ by its transformation leads to a SSNNRM with
Nig =

∑mi
j=1 cij exp(−

∫ tij
0 g(s)ds)
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Treasury and corporate bonds

While the estimation of Treasury term structure has
received enormous attention, little research has been done
for corporate bonds.

Special estimation procedures is necessary due to the lack
of data for corporate bond prices.

To borrow information from Treasury bonds, Jarrow,
Ruppert and Yu (2004) modelled the forward rate of
corporate bonds as a Treasure bond plus a parametric
credit spread. A polynomial function of low degree was
used to model the credit spread.

We now illustrate how to use SSNNRM to investigate
differences between two groups of bonds. We model the
credit spread nonparametrically. Thus our methods may be
used to check a parametric model.
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Smoothing Spline ANOVA decomposition

Let g(k , t) be the forward rate for bonds in group k , k = 1, 2.
We model the group effect using a one-way ANOVA model and
the time effect using a cubic spline model. Then we have the
following SS ANOVA decomposition

g(k , t) = µ + αk + βt + s2(t) + γk t + s12(k , t)

µ is a constant

αk is the main effect of group

βt is the linear main effect of time

s2(t) is the smooth main effect of time

γk t is the smooth-linear interaction between group and time

s12(k , t) is the smooth-smooth interaction between group
and time
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Credit spread

The credit spread equals

g(2, t)− g(1, t) = (α2 − α1) + (γ2 − γ1)t + (s12(2, t)− s12(1, t))

A constant spread is equivalent to that both interactions
γk t and s12(k , t) equal zero

A linear spread is equivalent to that the smooth-smooth
interaction s12(k , t) equals zero
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Data

144 GE (General Electronic Company) bonds and 78 Treasury
bonds were collected from Bloomberg. As expected, the GE
discount rate is consistently smaller than that of Treasury
bonds, representing a higher risk associated with corporate
bonds. The credit spread is not significantly different from a
constant function which confirms the results in Jarrow, Ruppert
and Yu (2004).
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Figure: Estimate of the discount functions (left), forward rates (middle) and
difference of forward rates between Treasury and GE bonds (right). On the
left and middle panels, solid and dotted lines represent Treasury and GE
bonds respectively. On the right panel, solid line represents estimate of the
credit spread and dotted lines represent 95% bootstrap confidence intervals.
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Chickenpox epidemic

The data set contains monthly number of reported cases of
chickenpox in New York City from 1931 to the first six months of
1972. The goal is to investigate dynamics in an epidemic: long
term trend over years, seasonal trend and their interactions.
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Seasonal variation

The seasonal variation was mainly caused by two factors:
social behavior of children who made close contacts when
school was in session
temperature and humidity which may affect the survival and
transmission of dispersal stages

Thus the seasonal variations were similar over the years

We assume that the seasonal variation has the same
shape after vertical shift and vertical scale transformations
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A multiplicative model for chickenpox epidemic

We assume the following multiplicative model

y(t1, t2) = g1(t2) + exp(g2(t2))× g3(t1) + ε(t1, t2)

y(t1, t2) is the square root of reported cases in month t1 of
year t2
Both t1 and t2 are transformed into the interval [0, 1]

g1 represents yearly mean cases
g2 represents magnitude of the seasonal variation.
exp(g2(t2)) is the amplitude. A bigger amplitude
corresponds to a bigger seasonal variation
g3 represents seasonal trend
All component functions have nice interpretations
g1, g2 and g3 are unknown and to be modeled
nonparametrically
A extension of the additive models and varying coefficient
models
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Identifiability and model spaces

g1 is modeled using a cubic spline: g1 ∈ W2[0, 1]
The exponential transformation of g2 makes the amplitude
positive. Again, g2 is modeled using a cubic spline. To
make g2 and g3 identifiable, we need the side condition∫ 1

0 g2(t)dt = 0. We achieve this by removing the constant
functions form the model space: g2 ∈ W2[0, 1]	 {1}
It has been recognized g3 periodic and is close to a
sinusoidal function, but a simple sinusoidal model may be
inappropriate. We use the L-spline with L = D2 + (2π)2 to
model g3. To make model g3 identifiable with g1, we need
the side condition

∫ 1
0 g3(t)dt = 0. Again, we achieve this by

removing the constant functions form the model space:
g3 ∈ W2(per)	 {1} where

W2(per) = {f : f and f ′ are absolutely continuous,

f (0) = f (1), f ′(0) = f ′(1),

∫ 1

0
(f ′′)2 < ∞}
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R code

S3 <- periodic(chickenpox$csmonth)
f3.tmp <- ssr(ct~1,rk=S3,data=chickenpox,

spar=’’m’’)
f3.ini <- as.vector(S3%*%f3.tmp$rkpk.obj$c)
nnr(ct~f1(csyear)+exp(f2(csyear))*f3(csmonth),

func=list(f1(x)~list(~I(x-.5),cubic(x)),
f2(x)~list(~I(x-.5)-1,cubic(x)),
f3(x)~list(~sin(2*pi*x)+

cos(2*pi*x)-1,lspline(x,type=’’sine0’’))),
data=chickenpox,
start=list(f1=mean(sqrt(count)),

f2=0,f3=f3.ini),
control=list(converg=’’coef’’), spar=’’m’’)
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Fits
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Conclusions

The SSNNRM is a versatile family of models which may be
useful for

estimating nonparametric functions when they are
observed indirectly throght a nonlinear functional
relaxing constratins using nonlinear transformations
checking nonlinear regression models

Gauss-Newton and Gauss-Seidel algorithms were exteded
for estimation

Methods for selecting smoothing parameters and inference
were developed

A user friendly R function, nnr , can be used to fit SSNNMs
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