
PhD Qualifying Examination–Part I
Department of Statistics

University of South Carolina
August 10, 2020 - 9:00AM–1:00PM

READ FIRST THESE INSTRUCTIONS

1. DO NOT write your name on any of your answer sheets. Instead, write your pre-assigned
codename.

2. There are four (4) problems on this examination.

3. Formulas relating to distributions potentially relevant to the problems are provide in the last
page.

4. You are not allowed to use search engines during the examination. Please adhere to the
HONOR CODE in this instance. Any violation of the HONOR CODE (such as using search
engines) will lead to a zero for the exam.

5. You have four hours for this examination. All four problems will be graded and are of equal
weight.
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The Problems

1. In medical diagnosis, the sensitivity of a test, for a particular virus for example, is the
probability of an individual testing positive given that he/she carries the virus; the specificity
is the probability of an individual testing negative given that he/she does not carry the virus.

Consider the population of South Carolina (SC), and a particular test for COVID-19 that has
a specificity of p0. Denote by d ∈ (0, 1) the COVID-19 prevalence of SC. A COVID-19 carrier
is either symptomatic (i.e., showing some disease symptoms) or asymptomatic (i.e., showing
no symptoms). The accuracy of this test depends on whether or not the testing subject
is symptomatic. In particular, the test returns a positive result with probability p1 when
the testing subject is a symptomatic carrier; whereas the test returns a positive result with
probability p2 when the testing subject is an asymptomatic carrier. Among the COVID-19
carriers in SC, a× 100% of them are asymptomatic, where a ∈ (0, 1).

(a) Derive the sensitivity of the test.

(b) Three randomly selected individuals in SC take the test. Assume that these three indi-
viduals are mutually independent in regard to the disease status (including being symp-
tomatic or not) and also in terms of the test result. If all three tests return negative,
what is the probability that at least one of the three individuals is a carrier?

(c) Three randomly selected individuals in SC take the test. Assume that these three indi-
viduals are mutually independent in regard to the disease status (including being symp-
tomatic or not) and also in terms of the test result. Given that at least one of the three
tests return positive, what is the probability that at least one of the three individuals is
an asymptomatic carrier?
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2. Consider a simple linear regression model in (1), where the response variable Y and the scalar
predictor X are both centered so that they each has a mean of zero,

Y = βX + ε; ε ∼ N(0, σ2), (1)

where β is the regression coefficient and σ2 is the error variance, both unknown. A random
sample of size n is collected, {(xi, yi), for i = 1, . . . , n}. Let y = (y1, . . . , yn)′ and x =
(x1, . . . , xn)′.

(a) Find the least squares estimator for β, denoted by β̂. Construct a 100(1−α)% confidence
interval for β based on the least squares estimator.

(b) To infer the unknown parameters in (β, σ2) under the regression setting, one may view y
as data and x as fixed constants, e.g., fixed design points. Derive the likelihood function
for inferring (β, σ2). Show that

n∑
i=1

(yi − βxi)2 =

n∑
i=1

e2
i + (β − β̂)2

n∑
i=1

x2
i ,

where ei = yi − β̂xi.
(c) Instead of using the least squares method, we now want to incorporate prior information

when inferring β and σ2. More specifically, assume that the prior distribution of β is
N(β0, σ

2
0), and the prior distribution of σ2 is an inverse gamma (IG), IG(a, λ), of which

the probability density function (pdf) is given by

f(σ2; a, λ) =
λa

Γ(a)

(
1

σ2

)a+1

exp

(
− λ

σ2

)
,

in which a > 0, λ > 0, and Γ(a) =
∫ +∞

0 ta−1e−t dt is the gamma function.

i. Derive the conditional posterior distribution of β, p(β|σ2,y).

ii. Derive the conditional posterior distribution of σ2, p(σ2|β,y).

(d) When prior information are unavailable, noninformative priors are used to carry out
Bayesian inference. A noninformative prior may not be a valid distribution, even though
one can still draw sensible Bayesian inference when such a prior is used. Suppose that
the noninformative priors for β and σ2 are specified by the following pdfs,

p(β) = 1, β ∈ (−∞,+∞),

p(σ2) =
1

σ2
, σ2 ∈ (0,+∞).

i. Derive the conditional posterior distribution of β, p(β|σ2,y).

ii. Derive the conditional posterior distribution of σ2, p(σ2|β,y).

(e) Under the noninformative prior specification in part (d), derive the marginal posterior
distribution of β, p(β|y). Based on this marginal posterior distribution, propose a point
estimator for β; also suggest a way to construct an interval estimator for β.
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3. Let X1, . . . , Xn be independent and identically distributed (iid) according to N(µ1, 1) and
Y1, . . . , Yn be iid according to N(µ2, 1). The two samples are mutually independent. Define
Θ0 = {(µ1, µ2) : max(µ1, µ2) ≤ 0} and let X̄n = n−1

∑n
i=1Xi and Ȳn = n−1

∑n
i=1 Yi. We

want to test H0 : (µ1, µ2) ∈ Θ0 versus H1 : not H0 at significance level α where 0 < α < 0.25.

(a) Suppose we use Tn =
√
nmin{X̄nI(X̄n ≥ 0), ȲnI(Ȳn ≥ 0)} as a test statistic and reject

H0 if Tn > tα at significance level α. Find the value tα such that resulting test is of size
α; i.e.,

sup
(µ1,µ2)∈Θ0

P (Tn > tα) ≤ α.

(b) We now develop a likelihood ratio test for this purpose.

(i) Let the likelihood ratio test statistic be λn. Show that

−2 log λn = nX̄2
nI(X̄n ≥ 0) + nȲ 2

n I(Ȳn ≥ 0).

(ii) For α < 0.25, let qα be the 1 − αth quantile of the distribution of Z2
1I(Z1 ≥

0) + Z2
2I(Z2 ≥ 0) where Z1 and Z2 are independent standard normal random

variables; i.e.,
P{Z2

1I(Z1 ≥ 0) + Z2
2I(Z2 ≥ 0) > qα} = α.

Prove that
sup

(µ1,µ2)∈Θ0

P (−2 log λn > qα) ≤ α;

that is, we reject H0 at significance level α if −2 log λn > qα.
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4. The diameter of a certain particle of interest follows an exponential distribution with a mean
of 1 unit. The particles pass through a sieve system, and the diameters of n particles coming
out of the sieve system are measured. When a particle is so big such that its diameter exceeds
θ units, it will not pass through the system. Consequently, the observed data, denoted by
(X1, . . . , Xn), are a random sample from a distribution supported on (0, θ).

(a) Show that the observed data form a random sample from a distribution whose probability
density function (pdf) is given by

f(x) =
e−x

1− e−θ
, for 0 < x < θ. (2)

(b) Derive the maximum likelihood estimator (MLE) of θ based on the observed data (X1, . . . , Xn).
Show that this MLE underestimates θ.

(c) Provide the uniformly most powerful (UMP) level-α test for testing H0 : θ ≤ θ0 versus
H1 : θ > θ0, where θ0 is a positive constant.

(d) Derive the Θ′-UMA (uniformly most accurate) (1 − α) confidence set of θ, where Θ′ =
{θ′ > 0 : θ′ < θ}.

(e) The distribution specified by the pdf in (2) is known as a truncated exponential dis-
tribution, not to confused with a shifted exponential distribution. Now return to the
regular exponential distributions (by setting θ = +∞ in (2) for instance). Suppose
X ∼ exponential(1). Consider a sequence of independent random variables, Y1, Y2, . . .,
that are also independent of X, where Yn ∼ exponential(1 + n−1), for n = 1, 2, . . .. As
n → ∞, does Yn converge to X in probability? Does it converge to X in distribution?
Does it converge to X almost surely? Explain.
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Formulas relating to some distributions

• Exponential(β)

pdf: f(x|β) = β−1e−x/β, 0 ≤ x <∞, β > 0

mgf: M(t) = (1− βt)−1, for t < 1/β

moments: E(X) = β, Var(X) = β2

• Gamma(α, β)

pdf: f(x|α, β) =
1

Γ(α)βα
xα−1e−x/β, 0 ≤ x <∞, α, β > 0

mgf: M(t) = (1− βt)−α, for t < 1/β

moments: E(X) = αβ, Var(X) = αβ2

notes: Gamma(1, β) is exponential(β). Gamma(p/2, 2) is χ2
p

• Normal(µ, σ2)

pdf: f(x|µ, σ2) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x <∞, −∞ < µ <∞, σ > 0

mgf: M(t) = eµt+σ
2t2/2

• t distribution with ν degrees of freedom.

pdf: f(x|ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) 1√
νπ

(
1 + x2/ν

)−(ν+1)/2
, −∞ < x <∞, ν = 1, 2, . . .

moments: E(X) = 0, for ν > 1; Var(X) = ν/(ν − 2), for ν > 2

6


