2022 August Qualifying Exam

Day 2

- 1. Scoliosis is an abnormal lateral curvature of the spine. Information on scoliosis is widely available across sites on the Internet including video sharing site YouTube, which has over 1 billion visitors per month. To study the popularity versus accuracy of YouTube videos for scoliosis, data from **50 independent** YouTube videos were collected. The primary outcome is the number of views on YouTube videos. The following variables were considered in this analysis.
 - Video ID: YouTube video ID number
 - Scol: Scoliosis-specific quality score. A higher score indicates better quality.
 - Age: The age of the videos in days.
 - Views: The number of views on the video

Read the data with the code:

The first 5 observations of the data are:

Video.ID	Scol	Age	Views
188ptlrq1Qo	3	1840	120125
miWPVMmn-zQ	14	2232	53547
9TWtrCmzaOw	2	2842	382825
BO8mtChRosg	4	1822	8032
ftkK0qIgjN0	7	1949	18385

- (a) <u>Perform</u> exploratory analysis on the variable **Views** and <u>describe</u> the characteristics of the variable **Views**. <u>Describe</u> the relationship between the variable **Views**, **Age** and **Scol**.
- (b) Let Y be 1 if a video has more than 20,000 views and 0 otherwise. Write down a regression model to model the probability of having more than 20,000 views based on the covariates: Age and scoliosis-specific quality score (Scol). Implement the described model, report the regression coefficient estimates with corresponding 95% confidence intervals. Interpret the regression coefficient estimates.

- (c) Now consider a linear regression model with **Views** as the response variable (**Y**) and **Age**, **Scol** as the covariates. <u>Write down</u> the linear regression model and <u>describe</u> the model assumptions.
- (d) <u>Comment</u> on the appropriateness of the model described in (c) for the data. Explain your reasons.
- (e) i. Write down a Poisson regression model with **Views** as the response variable (**Y**) and **Age**, **Scol** as the covariates.
 - ii. Describe the model assumptions,
 - iii. implement the Poisson regression model, and
 - iv. interpret the regression coefficients.
- (f) i. Comment on whether the model described in (e) is appropriate for the data. Why?
 - ii. Describe alternative approaches if better models could be considered (no need to perform the analyses, just describe).
 - iii. Describe an approach to compare goodness of fit between various models (no need to perform the analyses, just describe).
- 2. In a study of cardiovascular disease, researchers would like to examine the association between BMI (body mass index) and cholesterol level between 110 same-sex twin pairs. The twins are **randomly** ordered within a pair. The following variables are considered in this analysis.
 - ID: ID number of the twin pair
 - bmi1: Body mass index (BMI) of the first individual in the twin pair
 - bmi2: BMI of the second individual in the twin pair
 - age: age of the twin pair
 - gender: gender of the twin pair
 - dchol: difference of blood cholesterol level within the twin pair

Read the data with the code:

The first 5 observations of the data are:

ID	bmi1	bmi2	age	gender	dchol
1	24.91	24.38	48.08	male	0.99
2	26.67	22.27	60.74	male	3.51
3	29.96	25.34	50.89	male	3.08
4	23.74	22.86	48.63	female	-0.05
5	26.17	28.58	51.96	female	-1.72

(a) <u>Write down</u> a linear regression model for testing whether the difference of BMI (Y) is associated with the difference of blood cholesterol level (X) within a twin pair. <u>Explain</u> whether the intercept term should be included in the model? <u>State</u> your hypothesis based on the model.

- (b) Derive the least squares estimator for the regression coefficient and show that the estimator is unbiased. Derive the variance of the least squares estimator.
- (c) Let the residuals be $e_i = Y_i \hat{Y}_i$; what is the covariance matrix of $\mathbf{e} = (e_1, e_2, \dots e_n)'$? Are the residuals uncorrelated? Show your steps.
- (d) Now consider the following multiple linear regression model:

$$E(Y_{ij}) = \beta_0 + \beta_1 \times gender_i + \beta_2 \times age_i,$$

where Y_{ij} is the BMI for twin pair i, i = 1, 2, 3, ..., 110, individual j, j = 1, 2. Test the hypothesis: $\beta_1 = 0$ using the provided dataset and report the 95% confidence interval for β_1 .

- (e) Comment on the assumptions considered in (d) in light of the data.
- (f) Describe two alternative approaches to address the issues mentioned in (e). (No need to perform the analyses, just describe)
- 3. Let $X \sim \text{Poisson}(\lambda)$ and let $Y = \mathbf{1}(X \ge m)$ for some $m \ge 1$. That is, Y = 1 if $X \ge m$ and Y = 0 otherwise. Consider making inference about λ based on n independent realizations Y_1, \ldots, Y_n of Y, where $m \ge 1$ is known. Such data would arise if a researcher, after observing a Poisson count X, only recorded whether the count met or exceeded the threshold m.
 - (a) Write down the pmf of Y.
 - (b) Give the log-likelihood function for λ based on Y_1, \ldots, Y_n .
 - (c) Describe how to obtain the value of the maximum likelihood estimator for λ based on Y_1, \ldots, Y_n .
 - (d) Give the Fisher information $I_n(\lambda)$.
 - (e) Give the form of a Wald-type $(1 \alpha) \times 100\%$ confidence interval for λ based on Y_1, \ldots, Y_n .
 - (f) Use R and submit all code: For n = 100, suppose you observe $\sum_{i=1}^{100} Y_i = 14$ with m = 4.
 - i. Give the value of the maximum likelihood estimator for λ (rounded to two decimal places).
 - ii. Give the bounds of your Wald-type confidence interval for λ with $\alpha = 0.05$.