
PhD Qualifying Examination–Part I
Department of Statistics

University of South Carolina
May 24, 2021 - 9:00AM–1:00PM

READ FIRST THESE INSTRUCTIONS

1. DO NOT write your name on any of your answer sheets. Instead, write your pre-assigned
codename.

2. There are four (4) problems on this examination.

3. Formulas relating to distributions potentially relevant to the problems are provide in the last
page.

4. You are not allowed to use search engines during the examination. Please adhere to the
HONOR CODE in this instance. Any violation of the HONOR CODE (such as using search
engines) will lead to a zero for the exam.

5. You have four hours for this examination. All four problems will be graded and are of equal
weight.
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The Problems

1. Let X1, . . . , Xn, where n ≥ 2, be independent and identically distributed (i.i.d.) random
variables following Exp(λ), that is, an exponential distribution with mean equal to λ. Let
X = (X1, . . . , Xn). Also, let h(λ) = e−1/λ, which is the probability that a univariate Exp(λ)
random variable exceeds 1.

(a) Derive the distribution of W = X2 +X3 + · · ·+Xn.

(b) Derive the joint probability density function (pdf) of X1 and X1 +W .

(c) Derive the distribution of the random variable U =
X1∑n
i=1Xi

.

(d) Find the maximum likelihood estimator (MLE) of h(λ), call it ĥ(X).

(e) What is the limiting distribution of
√
n
{
ĥ(X)− h(λ)

}
as n→∞?

(f) Either prove that ĥ(X) is the uniform minimum variance unbiased estimator (UMVUE)
of h(λ) or find the UMVUE of h(λ). If you are constructing an alternative unbiased esti-
mator for h(λ) besides ĥ(X), please derive a closed form expression that is as simplified
as possible.
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2. Two players, Alan and Bill, are playing a game consisting of a series of trials, each of which
is won by either Alan or Bill. Assume that trials are independent and the probability θ (with
0 < θ < 1) that Alan wins a trial is constant across all trials. The winner of the overall game
is the first player to win 10 trials, but he MUST win with a margin of at least two. So the
game cannot be won by a score of 10-9, but possible winning scores are 11-9, 12-10, 13-11,
etc.

Now, suppose that Bill is leading the game, 8 trials to 3. At this point in time, we wish to
estimate the probability pA that Alan wins the overall game.

(a) Calculate pA and write it as a function of θ. Carefully show or explain your calculation.

(b) Find the maximum likelihood estimator of pA. You may appeal to well-established
results in your answer.

(c) There are several common methods to get a confidence interval for a binomial probabil-
ity. Below is shown R output that lists 95% confidence intervals for θ in this problem,
arising from five different methods. In addition, Figures 1–3 provide the five plots
displaying empirical coverage probabilities and average interval widths of these five
methods, based on simulations, in the case of n = 11 trials.

# Wilson score CI, with Yates continuity correction

> prop.test(x=3,n=11)$conf.int

[1] 0.07327666 0.60683390

# Wilson score CI, no continuity correction

> prop.test(x=3,n=11,correct=F)$conf.int

[1] 0.09746059 0.56564530

# Clopper-Pearson (Exact) CI

> binom.test(x=3,n=11)$conf.int

[1] 0.06021773 0.60974256

# Wald CI

> waldInterval(x=3,n=11)

[1] 0.009540121 0.535914424

# Agresti-Coull CI

> waldInterval(x=3+2,n=11+4)

[1] 0.09477411 0.57189255

What are your conclusions about the quality of these five methods? Which are best?
What, specifically, are the weaknesses of the other methods?

(d) Give a 95% confidence interval for pA. Briefly explain why your interval is a valid (at
least approximately) 95% confidence interval for pA.
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Figure 1: Empirical coverage probabilities and average interval width of Wilson score interval
estimates, without continuity correction (in the top panel) and with continuity correction
(in the bottom panel).
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Figure 2: Empirical coverage probabilities and average interval width of Clopper-Pearson
interval estimates (in the top panel) and those of Wald interval estimates (in the bottom
panel).
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Figure 3: Empirical coverage probabilities and average interval width of Agresti-Coull inter-
val estimates.
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3. Suppose that X1, . . . , Xn are independent and identically distributed (i.i.d.) random variables
following Beta(γ, 1) and that Y1, . . . , Ym are i.i.d. Beta(θ, 1). Let X = (X1, . . . , Xn) and
Y = (Y1, . . . , Ym). Assume further that X and Y are independent. We will consider testing
H0 : γ = θ versus H1 : γ 6= θ using the statistic,

T =

∑n
i=1 logXi∑n

i=1 logXi +
∑m

i=1 log Yi
.

(a) Derive the distribution of Z = −γ logX1.

(b) Derive the distribution of T under H0. You may use properties about sums of certain
i.i.d. random variables without proving these properties.

(c) Show that the maximum likelihood estimator (MLE) of γ is γ̂(X), where

γ̂(X) =
−n∑n

i=1 logXi
.

Obviously, the MLE of θ is θ̂(Y) = −m/
∑m

i=1 log Yi.

(d) We define µ̂0(X,Y) as follows:

µ̂0(X,Y) =
−(n+m)∑n

i=1 logXi +
∑m

i=1 log Yi
.

Use the fact that
∏n
i=1Xi = exp(

∑n
i=1 logXi) to show that

{(
∏n
i=1Xi) (

∏m
i=1 Yi)}

µ̂0(X,Y)−1

(
∏n
i=1Xi)

γ̂(X)−1 (
∏m
i=1 Yi)

θ̂(Y)−1
= 1.

(e) Construct the likelihood ratio test (LRT) statistic for testing H0 : γ = θ against
H1 : γ 6= θ in terms of µ̂0(X,Y), γ̂(X), and θ̂(Y).

(f) Using your answers in parts (c)-(e), show that the LRT statistic can be written in such
a way that it involves the data only through the statistic T .

(g) i. The general LRT theory tells us to reject H0 when the LRT statistic is small.
Describe an equivalent rejection rule in terms of T . You do not need to derive any
unknown constants in explicit form.

ii. Suppose that n = 23 and m = 12. Explain how you would find the rejection region
of a size-0.10 test in terms of T . Note: Again, you do not need to to derive explicit
cutoffs for the rejection region, but explain clearly how you could determine these
cutoffs for your rejection region using the given sample sizes, this significance level,
and numerical software.
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4. Consider a random sample consisting of n bivariate observations, (X1, Y1), . . . , (Xn, Yn). The
random sample is from a population that follows the joint distribution of (X,Y ), where the
marginal distribution of X is Poisson(λ), and conditioning on X = x, Y follows binomial(x+
1, p).

(a) Provide the maximum likelihood estimator (MLE) of p, denoted by p̂1. You do not
need to justify that the MLE you provide here does maximize the likelihood function
by checking the second-order derivatives.

(b) Does p̂1 converge almost surely to p as n→∞? Justify your answer.

(c) Suppose that the prior distribution of p is Beta(α, β), where α and β are two pre-
specified constants. Provide a Bayes estimator of p, denoted by p̂2. Does p̂2 converge
in probability to p as n→∞? Justify your answer.

(d) Find the covariance between X and Y . Provide the MLE of this covariance.

(e) Derive the marginal distribution of Y . (Hint: ex =
∑∞

k=0 x
k/k!)
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Formulas relating to some distributions

• Binomial(n, p)

pmf: f(x|n, p) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n; 0 ≤ p ≤ 1

mgf: M(t) = (pet + 1− p)n

moments: E(X) = np, Var(X) = np(1− p)

• Poisson(λ)

pmf: f(x|λ) =
e−λλx

x!
, x = 0, 1, . . . ; λ ≥ 0

mgf: M(t) = exp{λ(et − 1)}
moments: E(X) = λ, Var(X) = λ

• Beta(α, β)

pdf: f(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0

moments: E(X) =
α

α+ β
, Var(X) =

αβ

(α+ β)2(α+ β + 1)

• Exponential(β)

pdf: f(x|β) = β−1e−x/β, 0 ≤ x <∞, β > 0

mgf: M(t) = (1− βt)−1, for t < 1/β

moments: E(X) = β, Var(X) = β2

• Gamma(α, β)

pdf: f(x|α, β) =
1

Γ(α)βα
xα−1e−x/β, 0 ≤ x <∞, α, β > 0

mgf: M(t) = (1− βt)−α, for t < 1/β

moments: E(X) = αβ, Var(X) = αβ2

notes: Gamma(1, β) is exponential(β). Gamma(p/2, 2) is χ2
p

• Normal(µ, σ2)

pdf: f(x|µ, σ2) =
1√
2πσ

e−(x−µ)
2/(2σ2), −∞ < x <∞, −∞ < µ <∞, σ > 0

mgf: M(t) = eµt+σ
2t2/2

• t distribution with ν degrees of freedom.

pdf: f(x|ν) =
Γ
(
ν+1
2

)
Γ
(
ν
2

) 1√
νπ

(
1 + x2/ν

)−(ν+1)/2
, −∞ < x <∞, ν = 1, 2, . . .

moments: E(X) = 0, for ν > 1; Var(X) = ν/(ν − 2), for ν > 2
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