1. $H_0: p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = \frac{1}{6}$
 H_1: The die is not balanced
 Reject H_0 if $T > \chi^2_{0.95, 5} = 11.07$.
 $N = 600 \Rightarrow E_j = 100$ for each category
 $T = 8.58 \neq 11.07$, so fail to reject H_0. P-value ≈ 0.127

2. [Grad problem] H_0: Data come from $N(12, 3)$
 H_1: $N(12, 3)$ is a poor fit
 Note $E_j = (26)(\frac{1}{4}) = 6.5$ for each category under H_0.
 Reject H_0 if $T > \chi^2_{0.95, 3} = 7.815$
 $T = 11.54 > 7.815$, so reject H_0.
 P-value ≈ 0.0091

3. $H_0: p_1 \geq p_2$, $H_1: p_1 < p_2$
 Reject H_0 if $T < Z_{0.05} = -1.645$
 $T = \sqrt{60 \left[(23)(3) - (27)(7) \right]} = -1.39 \neq -1.645$.
 Fail to reject H_0. P-value ≈ 0.0829

4. $H_0: p_1 \leq p_2$, $H_1: p_1 > p_2$
 $\frac{Hired}{Not hired}$
 Male 10 11 $\Rightarrow T_2 = 10$. From R,
 Female 14 49
 Fisher's Exact Test, p-value $= .028 < .05$
 \Rightarrow Reject H_0, conclude males have a greater probability of being hired.
5) \(H_0: \) Post position and finishing position are independent
\(H_1: \) Post position and finishing position are dependent (associated)
-We use the \(\chi^2 \) test for independence here.

Reject \(H_0 \) if \(T > \chi^2_{.95,4} = 9.488 \)
\(T = 6.053 \neq 9.488, \) so fail to reject \(H_0. \)
We conclude finishing position may be independent of post position. \(P\)-value \(\approx .1091. \)

6) \(H_0: \) The 4 drill sergeants have the same median
\(H_1: \) The 4 drill sergeants do not all have the same median

Reject \(H_0 \) if \(T > \chi^2_{.95,3} = 7.81 \)
\(T = \frac{84^2}{(42)(42)} \left[\frac{14^2}{20} + \frac{8^2}{22} + \frac{8^2}{20} + \frac{15^2}{22} \right] - \frac{84}{(42)(42)} \)
\(= 5.55 \neq 7.81 \Rightarrow \) fail to reject \(H_0. \)
\(P\)-value \(\approx .1357 \)