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1) If a time series displays a mean function that is not constant, name two general approaches you could
take to achieve a series that is stationary. State an advantage of each approach.
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2) The analysis of time series data must account for the fact that data measured close in time are very
often (choose one)
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(A) independent (B) discrete (C) identical /(D) correlated ﬁ?

3) A simple trend model for a time series ¥; might be specified as Y; = p; + X,. Explain briefly in words
what each of L, and X; signify in this model.
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4) For what type of time series data (i.e., having what pattern or shape in a plot of the time series) are the

seasonal means model and the harmonic regression model commonly used? Which of these two models
makes a stronger assumption about the shape of the trend model?
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5) A data analyst fit a linear trend model with Y; as the response, and the AIC of the linear model was
453.7. The analyst fit a quadratic trend model with the same Y; as the response, and the AIC of the
quadratic model was 446.2. What conclusions can you draw?
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6) A data analyst fit a linear trend model with ¥, as the response, and the AIC of the linear model was
624.3. Because a residual analysis showed possible nonconstant spread of the residuals, the analyst fit a

linear trend model with the logarithm of Y; as the response, and the AIC of the log-transformed linear
model was 342.8. What conclusions can you draw?

Nonwe — we caunnot Comp Al e +Lte AlCs a”p +vo
w\oo\dS Wijr\’L A\M-exud' r&SFemSa wuw%ues,



7) A student wrote the following statement: “If a time series has a constant mean function over time, then
that time series is stationary.” In a sentence or two, carefully assess whether or not this statement is valid.
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8) For a time series {Yt }, the series of first differences is deﬁned as Yt Y1

What is the series of second differences?
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9) Let {Y:} be a stationary process. For such a process, how does var(Y;) compare to var(Y;-1)? Briefly
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10) Consider two random variables, X and Y. Suppose E(X) = 3, var(X) = 9, E(Y) = 0, var(Y) = 4, and
corr(X, Y) =—0.2. Find the following, showing all your steps:
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(b) corr(X+ 7, 2X—Y) [Hint: You can use the fact that var(2X — ¥) = 44.8 here.]
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11) Suppose {e} is a normal white noise process with mean zero and variance 1. Let {Y:} be a process
defined as:

Yt =gt 0.56t_2.

(a) Find the autocovariance function for this process. Write the autocovariance function as a piecewise

function for various values of the lag, specifically for lags k=0, 1, 2, and £ >2. Show your work where
applicable.
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(b) Find the autocorrelation function for this process (show work when applicable). Write the
autocorrelation function as a piecewise function for same values of the lag as you considered in part (a).
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12) The white blood cell count was measured for a patient over a period of 36 days. A plot of the time
series is given below.
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(a) An analyst decided to fit a linear trend model to this time series. Briefly discuss why you do or do not
agree with this choice, based on an initial look at the data.
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(b) Summary output from the ‘lm’ function in R is given below. Write the equation of the fitted linear
time trend model.

A

M= L74 ]+ o0.0021¢

Im{(formula = blood.ts ~ time(blood.ts))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.741011 0.084288 20.66 <2e-16 **x*
time (blood.ts) 0.062127 0.003973 15.64 <2e=-16 ***

Signif. codes: 0 ‘***'* (0,001 ‘**/ 0.01 '*' 0.05 '." 0.1 ' 1

Residual standard error: 0.2476 on 34 degrees of freedom
Multiple R-squared: 0.8779, Adjusted R-squared: 0.8744

(c) Various plots (three in all) of the standardized residuals for this linear trend model fit are given below.
For each one, write a brief comment explaining what can be concluded about the stochastic component of
the model, based on the respective plot.
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Standardized Residuals




Q-Q plot of studentized residuals
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ACF plot of studentized residuals
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(d) Do you believe the observed number of runs for the series of studentized residuals would be less than,
greater than, or approximately equal to the expected number of runs under the assumption of
independence? Briefly explain your answer.
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Extra credit: What famous statistician died this August at the age of nearly 103?
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