Appendix A: Expectation, Variance, Covariance and Correlation

\[E[h(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y)f(x, y)dxdy \]
\hspace{1cm} (2.A.1)

As a corollary to Equation (2.A.1), we easily obtain the important result

\[E(aX + bY + c) = aE(X) + bE(Y) + c \]
\hspace{1cm} (2.A.2)

We also have

\[E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y)dxdy \]
\hspace{1cm} (2.A.3)

The variance of a random variable \(X \) is defined as

\[Var(X) = E\{[X - E(X)]^2\} \]
\hspace{1cm} (2.A.4)

(provided \(E(X^2) \) exists). The variance of \(X \) is often denoted by \(\sigma^2 \) or \(\sigma_X^2 \).

Properties of Variance

\[Var(X) \geq 0 \]
\hspace{1cm} (2.A.5)

\[Var(a + bX) = b^2 Var(X) \]
\hspace{1cm} (2.A.6)

If \(X \) and \(Y \) are independent, then

\[Var(X + Y) = Var(X) + Var(Y) \]
\hspace{1cm} (2.A.7)

In general, it may be shown that

\[Var(X) = E(X^2) - [E(X)]^2 \]
\hspace{1cm} (2.A.8)

The positive square root of the variance of \(X \) is called the **standard deviation** of \(X \) and is often denoted by \(\sigma \) or \(\sigma_X \). The random variable \((X - \mu_X)/\sigma_X \) is called the **standardized version** of \(X \). The mean and standard deviation of a standardized variable are always zero and one, respectively.

The **covariance** of \(X \) and \(Y \) is defined as

\[Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] \]

Properties of Covariance

\[Cov(a + bX, c + dY) = bdCov(X, Y) \]
\hspace{1cm} (2.A.9)

\[Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) \]
\hspace{1cm} (2.A.10)

\[Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) \]
\hspace{1cm} (2.A.11)

\[Cov(X, X) = Var(X) \]
\hspace{1cm} (2.A.12)

\[Cov(X, Y) = Cov(Y, X) \]
\hspace{1cm} (2.A.13)

If \(X \) and \(Y \) are independent,

\[Cov(X, Y) = 0 \]
\hspace{1cm} (2.A.14)
The correlation coefficient of \(X\) and \(Y\), denoted by \(\text{Corr}(X, Y)\) or \(p\), is defined as

\[
p = \text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}
\]

Alternatively, if \(X^*\) is a standardized \(X\) and \(Y^*\) is a standardized \(Y\), then \(p = E(X^*Y^*)\).

Properties of Correlation

\[-1 \leq \text{Corr}(X, Y) \leq 1\] \hspace{1cm} (2.A.15)

\[
\text{Corr}(a + bX, c + dY) = \text{sign}(bd)\text{Corr}(X, Y)
\]

where \(\text{sign}(bd) = \begin{cases} 1 & \text{if } bd > 0 \\ 0 & \text{if } bd = 0 \\ -1 & \text{if } bd < 0 \end{cases}\) \hspace{1cm} (2.A.16)

\[
\text{Corr}(X, Y) = \pm 1 \text{ if and only if there are constants } a \text{ and } b \text{ such that } Pr(Y = a + bX) = 1.
\]

More Useful Properties:

\[
\text{var}(X - Y) = \text{var}(X) + \text{var}(Y) - 2\text{cov}(X, Y)
\]

\[
\text{cov}(W + X, Y + Z) = \text{cov}(W, Y) + \text{cov}(W, Z) + \text{cov}(X, Y) + \text{cov}(X, Z)
\]

\[
\text{cov}(aW + bX, cY + dZ) = (ac)\text{cov}(W, Y) + (ad)\text{cov}(W, Z) + (bc)\text{cov}(X, Y) + (bd)\text{cov}(X, Z)
\]

\[
\text{cov}(X, Y) = E(XY) - E(X)E(Y)
\]

If \(X\) and \(Y\) are independent, then

\[
E(XY) = E(X)E(Y)
\]