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Abstract

Nonparametric curve estimation is an extremely common statistical pro-
cedure. While its primary purpose has been exploratory, some advances in
inference have been made. This paper provides a critical review of inferential
tests that make fundamental use of a key element of nonparametric smoothing,
the bandwidth, to determine the significance of certain features. A major focus
is on two important problems that have been tackled using bandwidth-based
inference: testing for the multimodality of a density and testing for the mono-
tonicity of a regression curve. Early research in bandwidth-based inference is
surveyed, as well as recent theoretical advances. Possible future directions in
bandwidth-based inference are discussed.
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parametric regression; Multimodality; Smoothing.

1 Introduction

A major research area that has blossomed with the advent of the computer age is the
study of automated smoothing methods, such as density estimation and nonparamet-
ric regression. These methods have primarily been viewed as descriptive in nature,
able to summarize characteristics of the sample data in a flexible and innovative man-
ner, free from many restrictions imposed by parametric approaches. The nature of
nonparametric smoothing, however, renders formal inferential procedures difficult.
Some progress has been made in developing confidence bands for nonparametric
regression curves. See, for example, Eubank and Speckman [12] and Xia [55] and
the many references therein, as well as an extended discussion on the limitations
of such methods in Chaudhuri and Marron [3]. On the other hand, hypothesis tests
about nonparametric curve estimates often involve questions quite separate from those
resolved using confidence bands. Two major questions of interest come to mind.
When we estimate a density, it is important to determine whether the density
is multimodal, and in particular, we may wish to determine how many modes, or
“bumps,” the density has. Aside from the mathematical interest in the relative max-
ima of the density, the various bumps often represent distinct subpopulations within
the population under study. Whether these bumps reflect genuine groupings or sim-
ply sampling artifacts is an important data-analytic question. (While the terms mode

and bump are used interchangeably here to mean a relative maximum, note that



some authors include “shoulders”—points that are not relative maxima but where
that function has slope zero—in their definition of bump.)

In a regression problem, we wish to estimate the relationship between the mean of
a response variable Y and an explanatory variable X. In nonparametric regression,
this relationship is typically represented by a smooth curve. Note that if such a
curve has no bumps, it may (loosely) be labeled as monotone. So it is natural that
a test for modes, or bumps, could be adapted to a test for the monotonicity of a
regression relationship. Again, this is often an issue of interest: in dose-response
studies, the response Y may be expected to vary monotonically with a dosage level
X of a drug, say, and testing for deviations from monotonicity may be tantamount
to testing whether the drug is affecting recipients abnormally.

Statistical researchers have offered various methods to solve these problems. For
example, Cox [7] and Good and Gaskins [21] proposed tests for multimodality of
densities. Since then, many similar tests have been proposed. In this paper we focus
on inferential methods that rely on a fundamental aspect of many nonparametric
curve estimation techniques: namely, the bandwidth.

The bandwidth plays a prominent role in the “kernel” methods of density esti-
mation or regression. The kernel density estimate (kde) of a (univariate) density fx,

based on n sample observations X7y, ..., X,, is defined pointwise for each point ¢:

A

ft;h) = (nh)™ Z K{h7'(t - X))},

where the kernel function K(-) is often chosen to be a common symmetric density
function. (See Schucany [48] for an excellent detailed introduction to kernel smooth-

ing.) At any point, the ordinate of the density estimate is a sum of several densities’
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ordinates. The bandwidth h (also called the window width) represents the spread of
these kernel densities. Note that a large h implies that an observation x; can have
a nonnegligible effect on the kde value at a point quite distant from z;. For large h,
more observations contribute meaningfully to the kde value at each ¢. This leads to
lower pointwise variability of the density estimator and tends to produce a smoother
estimate. On the other hand, a small bandwidth leads to a “bumpier” estimate which
is more reflective of the vagaries of the noisy data.

The same principle holds for the kernel regression estimate (kre) based on paired

data z,...,z, and Yi,...,Y,, defined pointwise as:

m(t; h) = Z Yih Nz — 2 ) K{h~'(t — z)}.

(This is the Priestley-Chao [45] kernel estimator; related kre’s include that of Nadaraya
[44] and Watson [53] and that of Gasser and Miiller [17].) Again, a large bandwidth
tends to produce a smooth, regular regression curve, while a small A leads to a wiggly
curve that closely follows the raw data when overlain on a scatterplot.

Once we recognize the role the bandwidth plays in determining the shape of the
kernel estimate, we see how it could be used for inference. If the major question is,
Is the true nature of the data “bumpy” or “smooth”?, then one way to answer this
is to determine how much an ostensibly appropriate bandwidth must be increased to
produce a “smooth” curve estimate. The applications of bandwidth-based inference
have each used variations on this idea.

Thinking broadly, a major principle in bandwidth-based inference is that, in a
hypothesis-testing context, a particular bandwidth value defines the boundary of a

null region. (The particular definition of that null region depends on the situation
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being analyzed.) The important idea is that varying bandwidths lead to data models
that imply different states of nature. The extremity of the particular bandwidth that
puts the model in the null region says something, loosely, about the likelihood that the
state of nature defined by the null hypothesis is correct. Therefore, bandwidth-based
inference, while it has been focused on two major data-analytic situations, could be
applied more generally to any situation in which the bandwidth value influences our

perception of the state of nature.

2 Inference for Multimodality

The seminal paper on bandwidth-based inference was Silverman’s [50] short article
proposing a test for multimodality. Silverman noted that if the kernel chosen was a
normal density function, then the number of modes in the kde was a right-continuous
decreasing function of h. Hence, in testing the null hypothesis that the true density
f has at most k£ modes against the alternative that f has more than k& modes, one
could use what Silverman called the critical bandwidth h..;+: the smallest bandwidth
yielding a kde with at most £ modes. (This is well-defined if the number of modes is a
monotone function of the bandwidth, as is the case if the kernel is normal.) Note that
herit, then, is the bandwidth that places the density estimate exactly on the boundary
between the null and alternative regions. Since the number of modes decreases as h
increases, then f(-;h) has more than k modes if and only if A < he. This makes
the search for h..; a simple matter; one performs a binary search across a grid of h
values until finding the “boundary” bandwidth yielding f having k£ modes, but such

that any smaller bandwidth would yield k£ + 1 modes.



The critical bandwidth serves as a test statistic. A large value of h.;; favors

the alternative, since this implies a great deal of smoothing is needed to reduce the

!

number of modes to k. Let h_.;, be the particular value of the critical bandwidth that

crit
is obtained from the sample data. Employing the bootstrap, one might approximate
the null distribution of h..; by generating bootstrap samples based on the “null

estimate” f(-;h..,), and calculating the bootstrap-data h?; each time. Then the

!

p-value of the test would be the proportion of the A, values that exceed h,,;.

*

One can cleverly avoid the computational expense of finding A}, for each of

the many bootstrap data sets by defining the p-value as follows. Apply the density
estimator with bandwidth k., to each of the bootstrap data sets and let the p-value

be the proportion of the resulting density estimates with more than £ modes. This

% '

cri

is equivalent to finding the proportion of A, values exceeding h.;, because, for a

crit

*
crit

particular bootstrap sample, P( > h,..;,) equals the probability that h._; is not

large enough to force f (t; h) to have k or fewer modes when fit to that bootstrap data

! !

set. Hence a bootstrap data set requires ¥, > h. ., if and only if f(¢; A, ,) has more

cri crit

than £ modes when applied to that bootstrap data set.
Silverman used the now-familiar principle of the bootstrap—which at that time
had been fairly recently proposed by Efron [11]—to approximate the sampling dis-

!

tribution of the test statistic and thus determine the significance of h When

crit*
one obtains the bootstrap samples, Silverman recommended rescaling the critical-

bandwidth kde f(¢;h,,;,) to have the same variance as the sample variance of the

data. He gave the formula for deriving the “scaled” bootstrap data as:

Y = [+ (b)) (X5 + Blpes)



where the X}’s are sampled with replacement from Xi,...,X,, s is the sample
variance of the data, and ¢; are independent standard normal random variables. Sil-
verman noted that this rescaling yielded a smoothed bootstrap procedure that sampled
from a density on the “boundary” of the composite null hypothesis “f has at least k
modes” and thus honestly assessed the significance of h__;,.

Formally, the null hypothesis in Silverman’s test specifies a specific number of
modes k. In practice, however, the investigator often does not have a clear idea how
many modes a density has and may sequentially run the test for several k values. The
sequence of null hypotheses might be Hy : £k = 1; Hp : k < 2; and so on, with the
procedure stopping when one of the null hypotheses is not rejected. (For example,
if Hy : k = 1 is rejected, and then Hy : k£ < 2 is not rejected, the conclusion would
be that the population is bimodal.) The resulting p-values do not necessarily form a
monotone sequence, however, and the issue of a precise stopping rule is unresolved,
as are any pertinent multiple-testing concerns.

Izenman and Sommer [35] employed Silverman’s test to determine the number of
modes of a distribution of stamp thickness measurements. In addition to presenting
this data analysis, the paper includes an extensive, detailed discussion of Silverman’s
test, including incisive comments on the issue of a stopping rule when considering
a sequence of k values. In the stamp-thickness analysis, they suggested adjusting
Silverman’s procedure via an adaptive-bandwidth method. For the stamp-thickness
data, several small, possibly spurious, modes in the tails of the density—where few
data values were observed—were declared significant by the Silverman test. To reduce

the impact of regions where data were sparse, [zenman and Sommer suggested varying



h, making h small in regions dense with data and large in regions sparse with data.
In that case, some type of average critical bandwidth A could serve as the test
statistic. Exactly how this would be implemented would depend on the adaptive
procedure, and it remains an area for further research.

Some other applications of Silverman’s test include Segal and Wiemels [49], in a
clustering problem, and Bianchi [1], in an analysis of econometric data.

Though the Silverman test is heavily cited and has been called “ingenious” ([15],
p- 499), some drawbacks have been pointed out. The test seems to be conservative—
possible reasons for which were discussed by Silverman [51]—and the test makes no

distinction between tiny modes and large, “important”

modes in determining modal
significance. Fisher and Marron [15] suggested an alternative method that addressed
these drawbacks, and was more resistant to sample outliers. They modified the critical
bandwidth concept, synthesizing Silverman’s approach with another proposed test
for multimodality ([43]; see also [32]), which did not rely on a bandwidth as a test
statistic.

To identify “minor” modes, Fisher and Marron used a measure of “continuous
excess mass,” an idea modified from Miiller and Sawitzki [43]. The excess mass Ej, for
each mode j in the density estimate, is the area under the curve bounded vertically by
the peak of the bump and the nearest local minimum. When any of a pair of adjacent
modes has excess mass below a threshold myg, they should be combined, forming one

mode with larger excess mass. In addition, small isolated bumps can be eliminated

if their excess mass is less than another threshold )\g. To test the hypothesis

Hy:m<kvs. HH:m>k (1)



where m is the true number of modes of f, an appropriate test statistic is based on
Sk, the sum of the excess masses other than the k largest E;’s. Beginning with the
bandwidth large enough to yield a unimodal kde and then decreasing h, Fisher and

Marron defined a generalization of Silverman’s critical bandwidth:

hk = sup[h . Sk > O]

Testing a particular £ and for a given mg and Ag, this is the largest bandwidth such
that Sy is positive, and reduces to Silverman’s h..;; when mg = 0 and A\g = 0.

The parameters my and A affect the test’s sensitivity to small bumps. A value
of mg near 0 will be sensitive to small modes adjacent to other modes and more
often declare them “significant”; a value of Ay near 0 will be sensitive to small iso-
lated modes—often associated with sample outliers—and declare them significant.
Increasing mg or )¢ reduces the respective form of sensitivity and typically results in
fewer modes being deemed significant. A proper choice of parameter values depends
on the investigator’s needs: Is the identification of minor subpopulations or outlying
observations a goal of interest? Furthermore, while increasing mg can lead to a more
accurate size, it may also decrease power since Hj is less likely to be rejected. Fisher
and Marron provide some guidelines for choosing my and Aq.

While Ay could serve as a test statistic, Fisher and Marron recommend adjusted
statistics which are more resistant to outliers. Significance is determined via a boot-
strap approach. In addition, they propose a variation of the test statistic designed to
test for multimodality of circular data.

In a similar vein, the method of Minnotte [41] is something of a mix of two

approaches: It uses the critical bandwidth idea of Silverman [50], but the test statistic
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is based on probability masses of bumps in the density estimate, rendering it closer
in spirit to Fisher and Marron [15] and Miiller and Sawitzki [43].

Fisher, Mammen and Marron [14] took issue with Silverman’s rescaling of the
bootstrap sample values. For example, for multimodal f, this rescaling alters the
relative location of the modes. Another means of rescaling follows from the property
that the kernel estimator is scale-invariant; hence “rescaling the bootstrap observa-
tions is equivalent to rescaling the bandwidth,” noted Fisher, Mammen and Marron
([14], p- 503). Thus an appropriate p-value is the proportion of bootstrap-sample crit-

!

ical bandwidth values exceeding Rh_.,,, where R is a general rescaling factor. Fisher,

crit)

Mammen and Marron provide guidelines for choosing R so that Rh.,,;, provides the

same relative amount of smoothing as the h..;; value for the bootstrap sample.

3 Inference for Monotonicity

As mentioned previously, bumps (departures from monotonicity) in regression curves
are analogous to bumps (departures from unimodality) in density curves. An ana-
logue of Silverman’s test was introduced by Bowman, Jones and Gijbels [2] to test
monotonicity of a regression function. As with the Silverman procedure, the test
statistic is a critical bandwidth h..; that puts the curve estimate at the border of
the null region (here this means monotonicity), and the p-value is calculated via a
bootstrap method that approximates the null distribution of the test statistic.
When we use a kernel regression estimator such as the Gasser-Miiller or Priestley-
Chao estimator with a normal kernel, the property of monotonicity is in fact a mono-

tone function of the bandwidth: As h decreases, the number of bumps in the estimated
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curve can only increase. Bowman et al., however, employ the local linear estimator

where 5y and (; minimize

n

LSSE =Y "[Y; — By — Bu(z; — t)]h "' K[(z: — 1)/l

i=1

since it has desirable behavior at the boundaries of the X region, and since as h — oo,
the local linear estimator approaches a straight line, the quintessential monotone
function estimate. Since the local linear estimator does not share the “monotonicity of
monotonicity” property (such departures are infrequent), a slightly altered definition
of the critical bandwidth is needed: h..; is here the smallest bandwidth that yields
a monotone regression curve, even if larger bandwidths yield a nonmonotone curve.
This produces a slightly conservative test.

The nature of the bootstrap procedure in the regression situation is somewhat
different in that the bootstrapped values are here residuals. Initially a reasonable set
of residuals (from which to resample) must be obtained, and this problem reduces
to finding a reasonable estimate of the underlying regression curve. Bowman et
al. select the local linear curve estimator with the plug-in bandwidth selector of
Ruppert, Sheather and Wand [47]. Hence, their algorithm is: (1) find the critical
bandwidth hg.;; (2) Obtain error estimates éy,.. ., ¢é, where ¢ =Y; — m(X;; ho) and
hg is the plug-in bandwidth; Generate the bootstrap sample €7, ..., € by resampling
from €4, ..., é€,, and form the bootstrap data set by adding the bootstrap residuals to

the curve estimate that is just monotone:

Y;'* :m(Xz;hcrzt)+é:a 1= L"'an;
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(4) Calculate m(-|heit) based on {(X;,Y;*),s = 1,...,n} and observe whether the
resulting curve estimate is monotone (in practice this is done by discretizing m along
a fine grid of z-values); (5) Repeat (3) and (4) many times, with the p-value being
the proportion of nonmonotone results.

As with Silverman’s test, one is saved from having to compute h.,;; at each boot-

!

strap iteration to determine the proportion of times A}, > h.;: This event holds if
h,,:; is not large enough to make 772 monotone when fit to the bootstrap data, which
means that 7m(-|he:) based on {(X;,Y;*),i =1,...,n} is nonmonotone.

Bowman et al. provide a neat heuristic argument for the consistency of the test, in
the sense that the power — 1 (under H;) asn — oo: Under H; (“m is nonmonotone” ),
heriz converges to a positive number as n — 00, since to produce a monotone
from a nonmonotone m, we need a positive amount of smoothing (i.e., hei > 0).
Assuming H, for the purpose of generating the bootstrap data, the theoretical “best”
bandwidth (approximated by the plug-in hgy) will asymptotically produce a monotone
m(-). Then by its definition, A, < ho; and since as n — oo, the optimal bandwidth

tends to 0, then as n — oo, h,;; — 0. Because h..;; converges to a positive number,

P[h%,..; < heit] = 1 as n — oo under Hi, implying consistency.

The test for monotonicity has been naturally extended by Harezlak and Heckman
[30], who called their methodology CriSP (short for Critical Smoothing Parameter),
to a test of the number of bumps in a regression curve. The null hypothesis that there
are k or fewer bumps in the true regression function m(z) (or possibly a derivative of

m) is tested against the alternative that the number of bumps exceeds k. In practice,

the test would be successively carried out for £ = 0,1,2.... Like Silverman, Harezlak

12



and Heckman do not offer precise significance level adjustments to account for this
sequential testing, but do suggest that performing the tests with oo between 0.10 and
0.20 gives good results.

While Bowman et al. focused on local linear estimation of m, Harezlak and Heck-
man consider both local linear and L-spline (a generalization of smoothing splines;
see below) estimation methods. They also address in uncommon detail the issue of
exactly what constitutes a “bump.” The algorithm of Bowman et al. judged a curve
estimate as having a bump if there were any deviations from monotonicity along a
grid of 50 points, but Harezlak and Heckman define an [-bump to be a point on a dis-
cretized curve larger than any points plus or minus [ positions away, a more stringent
definition of a bump.

On the other hand, bandwidth-based tests for a regression curve’s monotonicity
have their detractors: Hall and Heckman [24] pointed out that such methods can have
undesirable properties when the true density is flat or nearly flat. For an underlying
regression function having a small dip, even as n — oo, the bandwidth-based test
is not asymptotically guaranteed to detect this nonmonotonicity. Like Fisher and
Marron [15] in the density estimation problem, Hall and Heckman introduce a mono-
tonicity test related to Miiller and Sawitzki [43] in that it does not directly employ
the bandwidth for inference.

Rather than testing a null hypothesis of monotonicity, Huang [34] proposed a test
for whether the regression function is linear. Although linearity is a specific case of
monotonicity, Huang’s test used a slightly different bandwidth-based method than

Bowman et al. Here, the critical bandwidth is the h producing a regression curve
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which is on the boundary between Hj and HY, where these are the hypotheses of the

F-test for linearity of Hastie and Tibshirani [33]:
H; : m(z) linear vs. Hy : m(x) is a smooth nonlinear function. (2)

That is, h..;; by definition is the smallest bandwidth that produces an estimate whose
p-value in the F-test is a. (The modifier “smallest” is required, again, because this
p-value is not necessarily a monotone function of bandwidth.) Though similar in
conception to the Bowman et al. test, there is a notable difference in implementa-
tion, since the critical bandwidth need not be determined via a grid-check along the
estimated curve. Again, the null distribution of the test statistic is determining by a
bootstrap method. As with the tests of Silverman and Bowman et al., calculation of
the test statistic for every bootstrap sample is unnecessary; one merely checks at each
bootstrap iteration whether the original A, ;, yields an F-statistic larger when applied
to the bootstrap sample than when applied to the original sample. Simulations show
that, like the other two procedures, Huang’s test is slightly conservative.

A novel bandwidth-based approach, notable for innovative color maps that sum-
marized the inferential conclusions about the curve’s important features, was intro-
duced by Chaudhuri and Marron [3]. Their SiZer method (the name being a contrac-
tion of “Significant Zero Crossing of Derivatives”), is appropriate for both density
estimation and nonparametric regression. Rather than focusing on inference regard-
ing a “true” underlying curve, Chaudhuri and Marron consider a plethora of visions
of curves, depending on the bandwidth. A small bandwidth produces a small-scale,
zoomed-in picture of the curve, while a large bandwidth yields a broad-scale “dis-

tant” image. Whether features (modes of densities or turning points in regression
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curves) are significant depends not only on the data but also through which band-
width the data are “viewed.” The SiZer map is a two-dimensional pictorial array,
with the horizontal axis paralleling the X (location) axis of the curve and the ver-
tical axis representing a range of bandwidths. The map is color-coded so that at
each X-location, and for each bandwidth, the display is red when the curve has been
judged to be significantly decreasing, blue when the curve is significantly increasing
and purple when the slope is not significantly different from zero. (Gray denotes
regions where the data are too sparse for any sort of judgment.) Thus the purple
areas represent points of interest: density modes or turning points.

Aside from the innovative presentation, SiZer requires some methodological de-
termination of whether particular features are significant. While pointing out certain
weaknesses of confidence-bound methods in nonparametric regression, some of which
are “grossly invalid because of bias problems” (p. 811), Chaudhuri and Marron use
a confidence-limit procedure as a basis for significance tests. The main difference is
that while other intervals purport to estimate (the derivative of) the underlying curve
f(t)—typically using a biased curve estimator—the SiZer intervals estimate the ex-
pected value of (the derivative of) the bandwidth-specific curve estimator E[f (t; h)].
By disregarding the notion of a true regression curve and making everything depend
on h, the problem of bias is sidestepped. The Chaudhuri-Marron confidence limits
are

f'(t;h) £ q- SD[f (¢; b)]

where ¢ is a quantile chosen by a normal approximation or bootstrap method as

appropriate for simultaneous inference. The standard deviation term is approximated
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through a binning procedure of Fan and Marron [13].

One advantage of SiZer is that it explicitly identifies feature locations rather than
simply the number of features as previous tests did; however, a user of, say, Silver-
man’s test could fairly easily identify the “significant” feature locations with a quick
plot. The more important novelty of the SiZer approach is that it presents informa-
tion about significant features for many different bandwidths at once. The idea that
different bandwidths yield different, possibly equally valid, views of the data, instead
of forcing the initial choice of one “correct” bandwidth, is an interesting one. The
development of SiZer has spurred several recent contributions, including [27], [28],
[37], and [39].

The SiZer graph is a close relative of the mode tree of Minnotte and Scott [42],
which also plots, in a treelike hierarchical graph, mode locations along a horizontal
axis, with bandwidth values on a vertical axis. In fact, some of the varying-bandwidth
perspective of Chaudhari and Marron had been expressed by Minnotte and Scott; the
mode tree also contains some of SiZer’s inferential flavor. Whereas SiZer uses different
colors to identify significant or nonsignificant modes, Minnotte and Scott place filled
circles and open circles, respectively, at the “nodes” of the mode tree to indicate such.
Significance is determined through a test similar to that of [41].

Note that these methods could be, in principle, applied to smoothing methods
that employ a continuous smoothness parameter other than a bandwidth. Two well-
known examples are the span, a key element in lowess and loess methods [5, 6], and
the smoothing parameter of the smoothing-spline method described in detail in [52]

and [22], which is a type of global nonparametric regression method. The span is the
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fraction of the data used at each point to estimate the curve; the larger the span,
the smoother (less wiggly) the curve estimate. The smoothing-spline parameter A
penalizes the roughness of a curve estimate; in the regression situation the fitted

curve minimizes the penalized residual sum of squares

P= S lutts) =ty + ) [ [ (s)ds.

A higher value of A yields a smoother estimated curve.

Some work has been done in this area: Harezlak and Heckman [30] investigated
the use of a critical A-value as the test statistic, finding that their test performed
about as well empirically as it did when the kernel-based bandwidth was used. Wong
[564] proposed a relative of Silverman’s test that used a kth-nearest-neighbor density
estimator; the critical k value (k is the span times n) serves as the test statistic. While
these quantities have similar purposes as bandwidths, it is probably more difficult to
develop theoretical properties of these alternative tests, and the main theoretical
advances have all focused on a “critical bandwidth” in traditional kernel-based curve
estimators.

Other approaches to testing for monotonicity, which rely on more advanced stochas-
tic processes theory, include those of Ghosal, Sen and van der Vaart [18] and Diimbgen
and Spokoiny [10], the latter of which also addresses multimodality testing. While
the test statistics in these methods involve bandwidths, they use the bandwidth much

less directly than do the aforementioned articles.
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4 Theoretical Investigations of Bandwidth-based

Inference

Since bandwidth-based inference is such a computationally intensive procedure, the
amount of investigation of the theoretical properties of Silverman’s test and its suc-
cessors serves as an indication of their elegance and attractiveness.

One of the major theoretical contributions in the general area of modality testing
was that of Donoho [9]. His result dealt with a general class of functionals of a
density, one example of which was the number of modes. Donoho proved that the
only reasonable confidence statements one could make about such functionals were
one-sided; furthermore, upper confidence bounds on, say, the number of modes were
not possible. This had the effect of specifying the relevant test of modality to be (1);
testing Hy : m > k against Hy : m < k would be unreasonable.

The initial theoretical investigation of the method of Silverman was given in [51]
and concerned the rate of convergence of h..; as the sample size n tends to oo.
Silverman proved that under the null hypothesis, h..; converges in probability to
zero, a convergence that does not occur under the alternative, implying that the test
is consistent.

Mammen, Marron and Fisher [40] derived an asymptotic formula for the expected
number of modes of a kernel density estimator. They thus proved the rate of conver-
gence of Silverman’s test statistic h..;; (as n tends to 0o). Under regularity conditions

1/5

mirroring those of [51], they showed h..;; is of order n='/° correcting a result given in

[51]. The bootstrap-sample critical bandwidth A% .., is also of order n~/%, suggesting
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that the probability of rejecting the null is asymptotically bounded away from 0 [40].
While [40] assumed a “regular” f having neither flat intervals nor “shoulders,” others
have considered a more general case, as we now explain.

In mode-testing, as in so many decision-theoretic setups, there is a fine line be-
tween the null hypothesis and the alternative. While one can easily conceptually
distinguish between a unimodal density and a bimodal density, what about the case
in which f has a “shoulder”? While this f falls into the “null” class of unimodal f, it
only just does; Cheng and Hall [4] consider the performance of Silverman’s test (and
that of [43]) in this “boundary” situation. When the true f is on the boundary of the
null, the critical bandwidth is of order n /7. Hence theory and methods designed for
the classic situation, argue Cheng and Hall, may fail when f is on the boundary, or
even close to it. Numerical studies show that “classic” methods are anticonservative,
rejecting Hy too often, when the true density is on the boundary; on the other hand,
methods calibrated for the boundary case are conservative if f is classically unimodal
[4].

Silverman [51] noted that the exact size of his modality test is typically lower
than its nominal level (even as n — o0), and Hall and York [26] investigated this
conservatism both theoretically and numerically. Deriving the null distribution of the
critical bandwidth, they used this result to suggest a calibration to correct the size.

!

Rather than taking the p-value to be the proportion of times that A, exceeds h

crit)

they proposed using the proportion of times that h,,;,/h%.; < Ao, where the number
Ao depends on the level o rather than identically equaling 1.

Because of its convenient property that the number of modes is a monotone func-
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tion of the bandwidth, the normal kernel is the customary choice when applying Sil-
verman’s test. Compactly supported kernels, however, are a common choice in curve
estimation, and Hall, Minnotte and Zhang [25] showed that although the monotonicity
property fails in the most popular compact kernels, the impact on the modality test
is often minor. In particular, they examined the Epanechnikov (uniweight), biweight,
and triweight kernels. Both the biweight and triweight kernels are “safe” in that non-
monotonicity of the number of modes does not tend to appear near h.,;;, although the
Epanechnikov kernel does lead to nonmonotonicity near h..;. Furthermore, the level
of the test (which is known to be asymptotically conservative) is relatively unaffected
by the choice of kernel [25].

While many of these theoretical discoveries at first glance seem to diminish or
poke holes in the seminal method of [50] and its subsequent parallels, that is an
unfair perspective. Silverman’s test was a cleverly innovative, approximately correct
procedure that has desirable properties in terms of consistency, though not necessarily
optimality. While further research has pointed out deficiencies and made improve-
ments in the Silverman test, the fundamental idea remains unassailable. The volume

of scrutiny afforded the procedure ultimately compliments it.

5 The Future of Bandwidth-based Inference

With the plethora of methodological and theoretical articles already published on
bandwidth-based inference, one reasonable question to ask is whether the research
area has run its course. Perhaps in terms of dealing with the two main problems of

interest, the modality and monotonicity questions, we are nearing that point. Recent
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approaches to testing for monotonicity [19, 20] have foregone the bandwidth-based
methods and even stated this lack of reliance on a critical smoothing parameter
as an advantage of their new methods. On the other hand, a potential influx of
new researchers could solve new variations on these problems using bandwidth-based
techniques. More broadly, the next step in bandwidth-based inference is to move
beyond the two familar problems and endeavor to find solutions to more complex
problems using bandwidth-based approaches. Some possible directions are outlined
in this section.

Extensions of bandwidth-based testing to other problems depend on the ability
to frame statistical questions in a particular way. As mentioned in the introduction,
null and alternative regions must be specified such that different choices of bandwidth
yield pictures of the data reflecting varying degrees of support of (or opposition to) the
null state of nature. This methodology has been carefully developed in the modality
and monotocity issues, but it could be applied to several other statistical problems.

In fact, the previously mentioned work of Huang [34] indeed employs this method-
ology to test for linearity. An immediate extension would be to test for other specified
functional forms for m(z), or even for the additivity of a nonparametric regression
function (see [8]). Estimating the functions of additive models may involve several
bandwidths, complicating the problem, but bandwidth-based solutions may have po-
tential.

Another obvious extension of the work detailed in this paper is to consider the
multidimensional analogues of the two problems. In the regression context, we might

consider the detection of (and even the rigorous definition of) nonmonotonicity for a
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regression function of multiple independent variables. Testing for the multimodality
of the density of a multidimensional random vector has important practical considera-
tions. With data mining techniques such as model-based clustering via mode-finding
growing in popularity, bandwidth-based methods could provide an opportunity for
formal inference in that direction. While the well-known “curse of dimensionality”
limits the effectiveness of kernel-based techniques for high-dimensional data, statis-
ticians are increasingly encountering practical problems with large numbers of vari-
ables. Discovering computationally feasible ways to adapt bandwidth-based inference
to high-dimensional data would certainly expand its utility.

Most, if not all, of the development of bandwidth-based inference has dealt with
a single density curve or regression curve: that is, there is assumed to be one sample
of interest. In recent years, the field of functional data analysis (FDA) has grown
rapidly; typically in FDA, the data set at hand consists of many curves (which may be
densities or regression curves, depending on the application). In FDA, nonparametric
curve estimation is of fundamental importance, since the observed data curves are
generally smoothed via some nonparametric method. Often such smoothing methods
involve a bandwidth (or other smoothing parameter) so that each smoothed curve
in the functional data set has an associated bandwidth. Since the collection of these
bandwidths characterizes features of the functional data sample, the procedures that
have aided single-curve analyses may, in future years, be extended to inferential issues
arising in multiple-curve analyses.

Gasser, Hall and Presnell [16] discuss the concept of a mode of a collection of

curves. The bandwidth plays an important role in the identification of the “modal
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curve,” and potential inference about the mode might involve the bandwidth value.
Jones and Rice ([36], p. 141), presenting a principal components approach to identify
representative curves in a sample of functional data, note that “certain features of [the
curves| might be of particular interest and an ordering, and hence a selection of curves,
might be based on such features (e.g., roughness of density estimates).” Whether
or not the authors have inference in mind here, it is obvious the the bandwidths
exemplify the type of informative features of the curves that could be used for further
analysis. Since Jones and Rice point out the effect that varying the bandwidth has
on the principal component scores of the data set (and these scores determine the
“representative” curves), it is not a great stretch to envision inference about these
representative curves being based on a set of bandwidths. In another recent example,
Harezlak, Naumova and Laird [31] have extended the CriSP method [30] to detect
local extrema in the mean regression curve for longitudinal data.

Tests for the equality of two regression curves have appeared in the literature
[23, 29, 38]. Ramsay and Silverman ([46], chapter 9) suggest functional ANOVA-
type procedures for testing the equality of curves from several groups. While much
work is needed to rigorously apply bandwidth-based methods to even these simple
multi-curve situations, a broad strategy for many of these FDA situations would be
to define a null state that unifies the entire set of curves in some sense. Then the
set of default bandwidths arising from fitting each curve separately may be compared
with a kind of critical bandwidth resulting from fitting the curves under the imposed
unifying constraint.

On a related note, much new research in nonparametric curve estimation has
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foregone a single-bandwidth approach in favor of adaptive schemes that allow the
bandwidth to vary in different regions of the curve. Typically the bandwidth varies
according to the density of the data or the steepness of the curve in each region.
Bandwidth-based inference must account for these new approaches, since the tradi-
tional notion of a single critical bandwidth would not apply in the varying-bandwidth
scheme. Izenman and Sommer’s suggestion of a critical “average bandwidth” is a step
in this direction, but much further work is needed.

Because nonparametric curve estimation provides a flexible framework for data
analysis, the desire for related inferential methods will likely continue. Bandwidth-
based methods have provided useful avenues for such inference, many of which are
discussed in this paper. Ultimately, the future of bandwidth-based inference depends
on the ability of researchers to adapt these approaches to the complex issues arising

in modern smoothing and functional data analysis.
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