
STAT 509 – Sections 6.3-6.4:  More on Regression 

 

• Simple linear regression involves using only one 

independent variable to predict a response variable. 

• Often, however, we have data on several independent 

variables that may be related to the response. 

• In that case, we can use a multiple linear regression 

model: 

 

Yi = 0 + 1xi1 + 2xi2 + …+ kxik + i 

 

Yi = response value for ith individual  

xij = value of the j-th independent variable for the ith 

individual  

0 = Intercept of regression equation 

j = coefficient of the j-th independent variable 

i = ith random error component 

 

Example (Table 6.34): 

Data are measurements on 25 coal specimens. 

 

Y = coking heat (in BTU/pound) for ith specimen 

X1 = fixed carbon (in percent) for ith specimen 

X2 = ash (in percent) for ith specimen 

X3 = sulfur (in percent) for ith specimen 

 

Yi = 0 + 1xi1 + 2xi2 + 3xi3 + i 

 

• We assume the random errors i have mean 0 (and 

variance 2), so that E(Y) = 0 + 1x1 + 2x2 + 3x3. 



 

• We again estimate 0, 1, 2, 3, etc., from the sample 

data using the principle of least squares. 

 

• For multiple linear regression, we will always use 

software to get the estimates b0, b1, b2, b3, etc. 

 

Fitting the Multiple Regression Model  

 

• Given a data set, we can use R to obtain the estimates 

b0, b1, b2, b3, …that produce the prediction equation 

with the smallest possible SSres =  

 

R code for example: 
> my.data <- read.table(file = 

"http://www.stat.sc.edu/~hitchcock/cokingheatdata.txt", 

col.names=c('x1','x2','x3','y'), header=FALSE) 

> attach(my.data) 

> lm(y ~ x1 + x2 + x3) 

 

Least squares prediction equation here: 

 

 

 

• We interpret the estimated coefficient bj as estimating 

the predicted change in the mean response for a one-

unit increase in Xj, given that all other independent 

variables are held constant. 

 

• Sometimes it is not logical/possible for one predictor to 

increase while other(s) are held constant.  This is called 

collinearity among the predictors. 



Inference in Multiple Regression 

 

• Inference in multiple regression requires very similar 

assumptions about the random error component i  as 

we have in simple linear regression. 

 

• Our unbiased estimate of 2
 is the mean squared 

residual: 

MSres =   SSres / (n–k–1) 

 

Testing the Overall Regression Relationship 

 

To test whether there is a relationship between the 

response and at least one of the predictors, we test: 

 

 

 

• If we reject H0 and conclude Ha is true, then we 

conclude that at least one of X1, X2, …, Xk is useful in the 

prediction of Y. 

• Under our model assumptions, we can test this with an 

F-test and can get the F-statistic and P-value using 

software. 

 

• Again, R
2
 =                  

is a measure of the overall adequacy of the model. 

 

R code for example: 
> summary(lm(y ~ x1 + x2 + x3)) 

 

 



Tests on the Individual Coefficients 

 

• We can test whether any individual predictor is 

linearly related to the response (given the other 

predictors in the model) by testing: 

 

 

 

with a t-test (n – k – 1 d.f.): 

 

Test about the j-th coefficient 

 

    One-Tailed Tests   Two-Tailed Test 

H0: j = 0  H0: j = 0   H0: j = 0 

H0: j < 0     H0: j > 0   H0: j ≠ 0 

 

• The value of the test statistic and P-value for this t-test 

are given in R for each coefficient: 

 
> summary(lm(y ~ x1 + x2 + x3)) 

 

Example:  In the presence of the predictors “ash” and 

“sulfur” in the model, is “fixed carbon” significantly 

related to coking heat? 

 

 

 

 

In the presence of the predictors “fixed carbon” and 

“sulfur” in the model, is “ash” significantly related to 

coking heat? 



In the presence of the predictors “fixed carbon” and 

“ash” in the model, is “sulfur” significantly related to 

coking heat? 

 

 

 

 

 

• Confidence intervals for the mean response and 

prediction intervals for an individual response can be 

found using R, similarly to SLR: 

 

Example:  Predict the coking heat of a specimen with 

70% fixed carbon, 10% ash, 1% sulfur with a 95% PI: 

 
predict(lm(y ~ x1 + x2 + x3), data.frame(cbind( 

x1 = 70, x2 = 10, x3 = 1)), interval="prediction", 

level=0.95) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Residual Analysis to check Model Assumptions 

 

• Our inferences in regression (and ANOVA) are only 

valid if the assumptions about the error terms are true. 

 

• We cannot observe the true error terms i, so we 

instead analyze the residuals:  

 

• Using software, we will examine two plots involving 

the residuals: 

 

(1) Scatter plot of residuals against predicted values 

 

(2) Normal Q-Q plot of residuals 

 

• If there are no violations of our model assumptions, 

plot (1) will show no particular pattern and plot (2) will 

show a roughly linear trend. 

 

• If plot (1) shows a clearly curved pattern, this 

indicates: 

 

 

 

 

• If plot (1) shows a “funnel” pattern, this indicates: 

 

 

 

 

 



• If plot (1) shows one or two points that are extremely 

high or extremely low, this indicates: 

 

 

 

 

• If plot (2) shows a clearly nonlinear trend, this 

indicates: 

 

 

 

 

 

Example (coking heat):  
> plot(fitted(lm(y ~ x1 + x2 + x3)), resid(lm(y ~ 

x1 + x2 + x3))); abline(h=0) 

> windows() 

> qqnorm(resid(lm(y ~ x1 + x2 + x3))) 

 

Violations? 

 

 

Example (ethanol concentration):  
> x <- c(20,30,40,50,60) 

> y <- c(.446,.601,.786,.928,.950) 

> plot(fitted(lm(y ~ x)), resid(lm(y ~ x))); 

abline(h=0) 

> windows() 

> qqnorm(resid(lm(y ~ x))) 

 

Violations? 

 
 



Remedies for Violations of Model Assumptions 

 

• If our residual plots show violations of our model 

assumptions, we can try some simple remedies. 

 

• A general approach to correct problems with the 

assumptions is to transform the response variable. 

 

(1) If the errors appear non-normal and/or the error 

variance appears non-constant, we often use  

 

 

as the transformed response variable. 

 

(2) If the linear relationship between Y and X seems 

doubtful, we may use a transformation of the response 

variable such as 

 

 

or we simply use another regression model (e.g., 

quadratic regression). 

 

(3) If there are severe outliers, we can consider 

removing these data values and redoing the analysis. 

 

Example:  Surgical Unit Data 

Y = survival time (in days) 

X1 = blood-clotting index 

 

 

 



R code: 
> surg.data <- read.table(file = 

"http://www.stat.sc.edu/~hitchcock/surgicalunitdata1.txt", 

header=FALSE, col.names = 

c('x1','x2','x3','x4','x5','x6','x7','x8','y')) 

> attach(surg.data) 

> qqnorm(resid(lm(y~x1))) 

> windows() 

> plot(fitted(lm(y ~ x1)), resid(lm(y ~ x1))); abline(h=0) 

> lny <- log(y) 

> qqnorm(resid(lm(lny~x1))) 

> windows() 

> plot(fitted(lm(lny ~ x1)), resid(lm(lny ~ x1))); 

abline(h=0) 

> lm(lny~x1) 

 

Prediction equation: 

 

• The disadvantage to transformations is that they make 

the regression equation less interpretable. 

 

• Predictions should be back-transformed into the 

original units of the response variable. 

 

Example:  Predict the survival time of a patient with 

blood-clotting index of X1 = 6. 

 

 
 

 

 

 

 

 

 

 

 

 



• Transforming the response variable is often an 

appropriate remedy for violations of the assumptions of    

the ANOVA F-test and one-sample and two-sample t-

procedures. 

 

Example (Chick weight data):  
 

> attach(chickwts) 

> feed <- factor(feed) 

> plot(fitted(lm(weight ~ feed)), resid(lm(weight ~ 

feed)) ); abline(h=0) 

> windows() 

> qqnorm(resid(lm(weight ~ feed)) ) 

 

Any violations? 

 

Example (Table 4.5 data): 

• For 26 recycled plastic specimens, the aluminum 

contamination (in ppm) was measured. 

• We wish to test whether the mean contamination is 

less than 160 ppm. 

 

R code: 
> y <- c(291, 222, 125, 79, 145, 119, 244, 118, 

182, 63, 30, 140, 101, 102, 87, 183, 60, 191, 119, 

511, 120, 172, 70, 30, 90, 115) 

> t.test(y, mu=160, alternative="less") 

> qqnorm(y) 

> lny <- log(y) 

> qqnorm(lny) 

> t.test(lny, mu=log(160), alternative="less") 

> t.test(lny, conf.level=0.95)$conf.int 

[1] 4.517819 5.027909 

 

95% CI for mean contamination: 


