STAT 509 – Section 7.3:  More Experimental Design 
• Unless k is quite small, full 2k factorial experiments require many experimental runs.
• Fractional factorial experiments are designed to reduce the required number of runs while maintaining the factorial structure and the ability to examine main effects and interaction effects of interest. 
• Fractional factorials do this by reducing the number of treatment combinations examined, and thus forgoing the ability to estimate “higher-order” interactions.
•  In most experiments, the high-order interactions (interactions among several factors) are not as important as the main effects and low-order (such as two-factor) interactions.
Example:  Half Fraction of a 23 Design
•  A full 23 factional experiment requires (even in the case of no replication)                 experimental runs.
•  In situations where experimental runs are time-consuming or costly, we may wish to obtain good conclusions with fewer than 2k runs.
Table of Contrasts for a Full 23 Factorial Design

I  x1   x2   x3  x1x2 x1x3 x2x3 x1x2x3

1  -1   -1   -1    1    1    1   -1  

1   1   -1   -1   -1   -1    1    1  

1  -1    1   -1   -1    1   -1    1  

1   1    1   -1    1   -1   -1   -1  

1  -1   -1    1    1   -1   -1    1  

1   1   -1    1   -1    1   -1   -1  

1  -1    1    1   -1   -1    1   -1  

1   1    1    1    1    1    1    1  

•  Suppose we remove all the rows in which the column x1x2x3 has -1.  This leaves us with:

I  x1   x2   x3  x1x2 x1x3 x2x3 x1x2x3

1   1   -1   -1   -1   -1    1    1  

1  -1    1   -1   -1    1   -1    1  

1  -1   -1    1    1   -1   -1    1  

1   1    1    1    1    1    1    1  

•  Advantage:  We are down to four rows, meaning we need only four experimental runs.
•  Disadvantage:  The column for I and the column for x1x2x3 are exactly the same.  This implies we cannot estimate both the intercept and the three-factor interaction effect.
• We say the three-factor interaction, ABC, is aliased with the intercept.
• In addition:  The columns for           and for                are exactly the same.
• So the main effect for factor A is aliased with the two-factor interaction BC.

• Similarly, the main effect for factor B is aliased with the two-factor interaction 

• And the main effect for factor C is aliased with the two-factor interaction 

• So in this half-fraction design, we cannot distinguish the main effect of any one factor from the interaction effect of the other two factors.

• Only solution?  Use a model that assumes the interactions are unimportant:

Linear Model for the 23-1 Factorial Design

Yi = 0 + 1xi1 + 2xi2 + 3xi3 + i
The notation “23-1 Factorial” indicates there are 2 levels for each factor; there are 3 factors, and it is a half fraction.
• The total number of treatment combinations is 23-1 = 

• If the interactions are indeed unimportant, this model is fine.

• If we use this half-fraction model and we do have important interactions, we can make false conclusions:  We might mistakenly conclude a main effect is significant when it actually is not.

• In this example, ABC is called the defining interaction because we picked a specific level for x1x2x3 to select which treatment combinations to run.
Determining the Alias Structure

• We can quickly determine which factors are aliased in the following way:
• The highest-order interaction is the defining interaction and is equated to the intercept, I.

• We add each effect to the defining interaction using modulo 2 arithmetic (where 1 + 1 = 0).

•  For example, in the 23-1 design:

A Real Data Example with Four Factors
• Table 7.44 gives the experimental results from a fractional factorial with a response variable Y = free height of a leaf spring, and 4 factors related to the heating process:
· High-heat temp. (x1): 1840, 1880
· Heating time (x2): 23, 25
· Transfer time (x3): 10, 12
· Hold-down time (x4): 2, 3
Determining the Alias Structure for a 24-1 Design here:
R code:

> leaf.data <- read.table(file = "http://www.stat.sc.edu/~hitchcock/leafspringdata.txt", header=T)

> attach(leaf.data)

> summary(lm(y ~ x1 * x2 * x3 * x4))

> qqnorm(coef(lm(y ~ x1 * x2 * x3 * x4))[-1],datax=T)
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• Based on the magnitudes of the estimated coefficients and the normal Q-Q plot of the estimated coefficients,  which effects appear to be significant?

Final Comments on Experimental Design

• Some experimenters use a “one-factor-at-a-time” (OFAAT) approach to designing experiments.
• This consists of an initial run in which all factors are set to the same level (say, “low”) and subsequent runs in which one factor at a time is changed from low to high:

• This approach has serious disadvantages compared to factorial (or fractional factorial) designs:

(1) The OFAAT approach cannot estimate interactions.

(2) The OFAAT approach does not examine the entire experimental region of treatment combinations.

(3) The effect estimates resulting from a OFAAT approach are not as precise as the estimates from a factorial (or fractional factorial) design.

• Other experimenters use a “shotgun” approach to design, in which they select treatment combinations randomly over the experimental region.

• This approach is also not preferred, since it tends to waste resources, miss important parts of the experimental region, and/or produce less precise estimates of effects.
