
STAT 509 – Section 7.3:  More Experimental Design  

 

• Unless k is quite small, full 2
k
 factorial experiments 

require many experimental runs. 

 

• Fractional factorial experiments are designed to 

reduce the required number of runs while maintaining 

the factorial structure and the ability to examine main 

effects and interaction effects of interest.  

 

• Fractional factorials do this by reducing the number 

of treatment combinations examined, and thus forgoing 

the ability to estimate “higher-order” interactions. 

 

•  In most experiments, the high-order interactions 

(interactions among several factors) are not as 

important as the main effects and low-order (such as 

two-factor) interactions. 

 

Example:  Half Fraction of a 2
3
 Design 

 

•  A full 2
3
 factional experiment requires (even in the 

case of no replication)                 experimental runs. 

 

•  In situations where experimental runs are time-

consuming or costly, we may wish to obtain good 

conclusions with fewer than 2
k
 runs. 

 

 

 

 



Table of Contrasts for a Full 2
3
 Factorial Design 

 
I  x1   x2   x3  x1x2 x1x3 x2x3 x1x2x3 

1  -1   -1   -1    1    1    1   -1   

1   1   -1   -1   -1   -1    1    1   

1  -1    1   -1   -1    1   -1    1   

1   1    1   -1    1   -1   -1   -1   

1  -1   -1    1    1   -1   -1    1   

1   1   -1    1   -1    1   -1   -1   

1  -1    1    1   -1   -1    1   -1   

1   1    1    1    1    1    1    1   

 

•  Suppose we remove all the rows in which the column 

x1x2x3 has -1.  This leaves us with: 

 
I  x1   x2   x3  x1x2 x1x3 x2x3 x1x2x3 

1   1   -1   -1   -1   -1    1    1   

1  -1    1   -1   -1    1   -1    1   

1  -1   -1    1    1   -1   -1    1   

1   1    1    1    1    1    1    1   

 

•  Advantage:  We are down to four rows, meaning we 

need only four experimental runs. 

 

•  Disadvantage:  The column for I and the column for 

x1x2x3 are exactly the same.  This implies we cannot 

estimate both the intercept and the three-factor 

interaction effect. 

• We say the three-factor interaction, ABC, is aliased 

with the intercept. 

 



• In addition:  The columns for           and for                

are exactly the same. 

 

• So the main effect for factor A is aliased with the two-

factor interaction BC. 

 

• Similarly, the main effect for factor B is aliased with 

the two-factor interaction  

 

• And the main effect for factor C is aliased with the 

two-factor interaction  

 

• So in this half-fraction design, we cannot distinguish 

the main effect of any one factor from the interaction 

effect of the other two factors. 

 

• Only solution?  Use a model that assumes the 

interactions are unimportant: 

 

Linear Model for the 2
3-1

 Factorial Design 

 

Yi = 0 + 1xi1 + 2xi2 + 3xi3 + i 

 

 

The notation “2
3-1

 Factorial” indicates there are 2 levels 

for each factor; there are 3 factors, and it is a half 

fraction. 

 

• The total number of treatment combinations is 2
3-1

 =  

 

 



 

• If the interactions are indeed unimportant, this model 

is fine. 

• If we use this half-fraction model and we do have 

important interactions, we can make false conclusions:  

We might mistakenly conclude a main effect is 

significant when it actually is not. 

 

• In this example, ABC is called the defining interaction 

because we picked a specific level for x1x2x3 to select 

which treatment combinations to run. 

 

Determining the Alias Structure 

 

• We can quickly determine which factors are aliased in 

the following way: 

• The highest-order interaction is the defining 

interaction and is equated to the intercept, I. 

• We add each effect to the defining interaction using 

modulo 2 arithmetic (where 1 + 1 = 0). 

•  For example, in the 2
3-1

 design: 

 

 

 

 

 

 

 

 

 

 



A Real Data Example with Four Factors 

 

• Table 7.44 gives the experimental results from a 

fractional factorial with a response variable Y = free 

height of a leaf spring, and 4 factors related to the 

heating process: 

– High-heat temp. (x1): 1840, 1880 

– Heating time (x2): 23, 25 

– Transfer time (x3): 10, 12 

– Hold-down time (x4): 2, 3 

 

Determining the Alias Structure for a 2
4-1

 Design here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



R code: 

 
> leaf.data <- read.table(file = 

"http://www.stat.sc.edu/~hitchcock/leafspringdata.txt", 

header=T) 

> attach(leaf.data) 

> summary(lm(y ~ x1 * x2 * x3 * x4)) 

> qqnorm(coef(lm(y ~ x1 * x2 * x3 * x4))[-1],datax=T) 
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• Based on the magnitudes of the estimated coefficients 

and the normal Q-Q plot of the estimated coefficients,  

which effects appear to be significant? 

 

 

 

 

 

 

 

 

 

 

 

 



Final Comments on Experimental Design 

 

• Some experimenters use a “one-factor-at-a-time” 

(OFAAT) approach to designing experiments. 

• This consists of an initial run in which all factors are 

set to the same level (say, “low”) and subsequent runs in 

which one factor at a time is changed from low to high: 

 

 

 

 

 

 

 

• This approach has serious disadvantages compared to 

factorial (or fractional factorial) designs: 

(1) The OFAAT approach cannot estimate interactions. 

(2) The OFAAT approach does not examine the entire 

experimental region of treatment combinations. 

(3) The effect estimates resulting from a OFAAT 

approach are not as precise as the estimates from a 

factorial (or fractional factorial) design. 

 

• Other experimenters use a “shotgun” approach to 

design, in which they select treatment combinations 

randomly over the experimental region. 

• This approach is also not preferred, since it tends to 

waste resources, miss important parts of the 

experimental region, and/or produce less precise 

estimates of effects. 


