CIs are possibly the most useful forms of inference because they give a range of “reasonable” values for a parameter.

But sometimes we want to know whether one particular value for a parameter is “reasonable.” In this case, a popular form of inference is the hypothesis test.

We use data to test a claim (about a parameter) called the null hypothesis.

Example 1: We claim the proportion of USC students who travel home for Christmas is 0.95.

Example 2: We claim the mean nightly hotel price for hotels in SC is no more than $65.

Null hypothesis (denoted H₀) often represents “status quo”, “previous belief” or “no effect”.

Alternative hypothesis (denoted Hₐ) is usually what we seek evidence for.

We will reject H₀ and conclude Hₐ if the data provide convincing evidence that Hₐ is true.

Evidence in the data is measured by a test statistic.
A test statistic measures how far away the corresponding sample statistic is from the parameter value(s) specified by H₀.

If the sample statistic is extremely far from the value(s) in H₀, we say the test statistic falls in the “rejection region” and we reject H₀ in favor of Hₐ.

Example 2: We assumed the mean nightly hotel price in SC is no more than $65, but we seek evidence that the mean price is actually greater than $65. We randomly sample 64 hotels and calculate the sample mean price \(\bar{X} \). Let \(Z = \frac{\bar{X} - 65}{\sigma/\sqrt{n}} \) be our “test statistic” here.

Note: If this Z value is much bigger than zero, then we have evidence against H₀: \(\mu \leq 65 \) and in favor of Hₐ: \(\mu > 65 \).

Suppose we’ll reject H₀ if \(Z > 1.645 \).

If \(\mu \) really is 65, then Z has a standard normal distribution. (Why?)

Picture:
If we reject H_0 whenever $Z > 1.645$, what is the probability we reject H_0 when H_0 really is true?

$$P(Z > 1.645 \mid \mu = 65) =$$

This is the probability of making a Type I error (rejecting H_0 when it is actually true).

P(Type I error) = “level of significance” of the test (denoted α).

We don’t want to make a Type I error very often, so we choose α to be small:

The α we choose will determine our rejection region (determines how strong the sample evidence must be to reject H_0).

In the previous example, if we choose $\alpha = .05$, then $Z > 1.645$ is our rejection region.
Hypothesis Tests of the Population Mean

In practice, we don’t know \(\sigma \), so we don’t use the \(Z \)-statistic for our tests about \(\mu \).

Use the t-statistic:
\[
t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}
\]
where \(\mu_0 \) is the value in the null hypothesis.

This has a t-distribution (with \(n - 1 \) d.f.) if \(H_0 \) is true (if \(\mu \) really equals \(\mu_0 \)).

Example 2: Hotel prices:
\(H_0: \mu = 65 \)
\(H_a: \mu > 65 \)

Sample 64 hotels, get \(\overline{X} = $67 \) and \(s = $10 \). Let’s set \(\alpha = .05 \).

Rejection region:

Reject \(H_0 \) if \(t \) is bigger than 1.67.

Conclusion:
We never accept H_0; we simply “fail to reject” H_0.

This example is a one-tailed test, since the rejection region was in one tail of the t-distribution.

Only very large values of t provided evidence against H_0 and for H_A.

Suppose we had sought evidence that the mean price was less than 72. The hypotheses would have been:

H_0: $\mu = 72$

H_A: $\mu < 72$

Now very small values of $t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$ would be evidence against H_0 and for H_A.

Rejection region would be in left tail:
Rules for one-tailed tests about population mean

\[H_0: \mu = \mu_0 \]
\[H_a: \mu < \mu_0 \] \ or \ \[H_a: \mu > \mu_0 \]

Test statistic: \[t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \]

Rejection: \[t < -t_{\alpha} \] \ or \ \[t > t_{\alpha} \]

Region: (where \(t_{\alpha} \) is based on \(n - 1 \) d.f.)

Rules for two-tailed tests about population mean

\[H_0: \mu = \mu_0 \]
\[H_a: \mu \neq \mu_0 \]

Test statistic: \[t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \]

Rejection: \[t < -t_{\alpha/2} \] \ or \ \[t > t_{\alpha/2} \] (both tails)

Region: (where \(t_{\alpha/2} \) is based on \(n - 1 \) d.f.)
Example: We want to test (using $\alpha = .05$) whether or not the true mean height of male USC students is 70 inches.

Sample 26 male USC students. Sample data: $\bar{X} = 68.5$ inches, $s = 3.3$ inches.

Assumptions of t-test (and CI) about μ
- We assume the data come from a population that is approximately normal.
- If this is not true, our conclusions from the hypothesis test may not be accurate (and our true level of confidence for the CI may not be what we specify).
- How to check this assumption?

- The t-procedures are robust: If the data are “close” to normal, the t-test and t CIs will be quite reliable.
Hypothesis Tests about a Population Proportion

We often wish to test whether a population proportion p equals a specified value.

Example 1: We suspect a theater is letting underage viewers into R-rated movies. Question: Is the proportion of R-rated movie viewers at this theater greater than 0.25?

We test:

Recall: The sample proportion \hat{p} is approximately

$N\left(p, \sqrt{\frac{pq}{n}} \right)$ for large n, so our test statistic for testing $H_0: p = p_0$

has a standard normal distribution when H_0 is true (when p really is p_0).
Rules for one-tailed tests about population proportion

H₀: p = p₀
Hₐ: p < p₀ or Hₐ: p > p₀

Test statistic:
\[z = \frac{\hat{p} - p₀}{\sqrt{\frac{p₀q₀}{n}}} \]

Rejection
\[z < -z_α \quad \text{or} \quad z > z_α \]

Region:

Rules for two-tailed tests about population proportion

H₀: p = p₀
Hₐ: p ≠ p₀

Test statistic:
\[z = \frac{\hat{p} - p₀}{\sqrt{\frac{p₀q₀}{n}}} \]

Rejection
\[z < -z_{α/2} \quad \text{or} \quad z > z_{α/2} \text{ (both tails)} \]

Region:

Assumptions of test (need large sample):

Need:
Example 1:
Test $H_0: p = 0.25$ vs. $H_a: p > 0.25$ using $\alpha = .01$.

We randomly select 60 viewers of R-rated movies, and 23 of those are underage.

Example 1(a): What if we had wanted to test whether the proportion of underage viewers was different from 0.25?
P-values

Recall that the significance level α is the desired \(P(\text{Type I error}) \) that we specify before the test.

The P-value (or “observed significance level”) of a test is the probability of observing as extreme (or more extreme) of a value of the test statistic than we did observe, if H_0 was in fact true.

The P-value gives us an indication of the strength of evidence against H_0 (and for H_a) in the sample.

This is a different (yet equivalent) way to decide whether to reject the null hypothesis:

- A small p-value (less than α) = strong evidence against the null \Rightarrow Reject H_0

- A large p-value (greater than α) = little evidence against the null \Rightarrow Fail to reject H_0

How do we calculate the P-value? It depends on the alternative hypothesis.
One-tailed tests

<table>
<thead>
<tr>
<th>Alternative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_a: "<"$</td>
<td>Area to the left of the test statistic value in the appropriate distribution (t or z).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_a: ">"$</td>
<td>Area to the right of the test statistic value in the appropriate distribution (t or z).</td>
</tr>
</tbody>
</table>

Two-tailed test

<table>
<thead>
<tr>
<th>Alternative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_a: "\neq"$</td>
<td>2 times the “tail area” outside the test statistic value in the appropriate distribution (t or z). Double the tail area to get the P-value!</td>
</tr>
</tbody>
</table>
P-values for Previous Examples

Hotel Price Example: \(H_0: \mu = 65 \) vs. \(H_a: \mu > 65 \)

Test statistic value:

Student height example: \(H_0: \mu = 70 \) vs. \(H_a: \mu \neq 70 \)

Test statistic value:
Movie theater example: $H_0: p = 0.25$ vs. $H_a: p > 0.25$

Test statistic value:

What if we had done a two-tailed test of $H_0: p = 0.25$ vs. $H_a: p \neq 0.25$ at $\alpha = .01$?
Relationship between a CI and a (two-sided) hypothesis test:

- A test of $H_0: \mu = m^*$ vs. $H_a: \mu \neq m^*$ will reject H_0 if and only if a corresponding CI for μ does not contain the number m^*.

Example: A 95% CI for μ is (2.7, 5.5).

(1) At $\alpha = 0.05$, would we reject $H_0: \mu = 3$ in favor of $H_a: \mu \neq 3$?

(2) At $\alpha = 0.05$, would we reject $H_0: \mu = 2$ in favor of $H_a: \mu \neq 2$?

(3) At $\alpha = 0.10$, would we reject $H_0: \mu = 2$ in favor of $H_a: \mu \neq 2$?

(4) At $\alpha = 0.01$, would we reject $H_0: \mu = 3$ in favor of $H_a: \mu \neq 3$?
Power of a Hypothesis Test

- Recall the significance level \(\alpha \) is our desired
 \[P(\text{Type I error}) = P(\text{Reject } H_0 \mid H_0 \text{ true}) \]

The other type of error in hypothesis testing:
Type II error =

\[P(\text{Type II error}) = \beta \]

The power of a test is

- High power is desirable, but we have little control over it (different from \(\alpha \))

Calculating Power: The power of a test about \(\mu \)
depends on several things: \(\alpha, n, \sigma, \) and the true \(\mu \).

Example 1: Suppose we test whether the true mean nicotine contents in a population of cigarettes is greater than 1.5 mg, using \(\alpha = 0.01 \).

\[H_0: \quad H_a: \]

We take a random sample of 36 cigarettes. Suppose we know \(\sigma = 0.20 \) mg. Our test statistic is
We reject H_0 if:

• Now, suppose μ is actually 1.6 (implying that H_0 is false). Let’s calculate the power of our test if $\mu = 1.6$:

This is just a normal probability problem!

• What if the true mean were 1.65?

Verify:

• The farther the true mean is into the “alternative region,” the more likely we are to correctly reject H_0.
Example 2: Testing $H_0: p = 0.9$ vs. $H_a: p < 0.9$ at $\alpha = 0.01$ using a sample of size 225.

Suppose the true p is 0.8. Then our power is: