Mostly we have studied the behavior of a single random variable.
Often, however, we gather data on two random variables.
We wish to determine: Is there a relationship between the two r.v.'s?
Can we use the values of one r.v. to predict the other r.v.?
Often we assume a straight-line relationship between two variables.
This is known as simple linear regression.

Probabilistic vs. Deterministic Models

If there is an exact relationship between two (or more) variables that can be predicted with certainty, without any random error, this is known as a deterministic relationship.

Examples:
In statistics, we usually deal with situations having random error, so exact predictions are not possible.

This implies a probabilistic relationship between the 2 variables.

Example: \(Y = \text{breathalyzer reading} \)
\(X = \text{amount of alcohol consumed (fl. oz.)} \)
Note that usually, no line will go through all the points in the data set.

For each point, the error =
(Some positive errors, some negative errors)

We want the line that makes these errors as small as possible (so that the line is "close" to the points).

Least-squares method: We choose the line that minimizes the sum of all the **squared** errors (SSE).

Least squares regression line:

\[\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X \]

where \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) are the estimates of \(\beta_0 \) and \(\beta_1 \) that produce the best-fitting line in the least squares sense.
Formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$:

Estimated slope and intercept:

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} \quad \text{and} \quad \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

where

$$SS_{xy} = \sum X_i Y_i - \frac{(\sum X_i)(\sum Y_i)}{n} \quad \text{and}$$

$$SS_{xx} = \sum X_i^2 - \frac{(\sum X_i)^2}{n}$$

and n = the number of observations.

Example (Table 11.3):

$$Y =$$

$$X =$$

$$SS_{xy} =$$

$$SS_{xx} =$$
Interpretations:

Slope:

Intercept:

Example:

Avoid extrapolation: predicting/interpreting the regression line for X-values outside the range of X in the data set.
Model Assumptions

Recall model equation: \(Y = \beta_0 + \beta_1 X + \varepsilon \)

To perform inference about our regression line, we need to make certain assumptions about the random error component, \(\varepsilon \). We assume:

1. The mean of the probability distribution of \(\varepsilon \) is 0. (In the long run, the values of the random error part average zero.)
2. The variance of the probability distribution of \(\varepsilon \) is constant for all values of \(X \). We denote the variance of \(\varepsilon \) by \(\sigma^2 \).
3. The probability distribution of \(\varepsilon \) is normal.
4. The values of \(\varepsilon \) for any two observed \(Y \)-values are independent – the value of \(\varepsilon \) for one \(Y \)-value has no effect on the value of \(\varepsilon \) for another \(Y \)-value.

Picture:
Estimating σ^2

Typically the error variance σ^2 is unknown.

An unbiased estimate of σ^2 is the mean squared error (MSE), also denoted s^2 sometimes.

$$\text{MSE} = \frac{\text{SSE}}{n-2}$$

where $\text{SSE} = \text{SS}_{yy} - \hat{\beta}_1 \text{SS}_{xy}$

and $\text{SS}_{yy} = \sum Y_i^2 - \frac{(\sum Y_i)^2}{n}$

Note that an estimate of σ is

$$s = \sqrt{\text{MSE}} = \sqrt{\frac{\text{SSE}}{n-2}}$$

Since ε has a normal distribution, we can say, for example, that about 95% of the observed Y-values fall within $2s$ units of the corresponding values \hat{Y}.
Testing the Usefulness of the Model

For the SLR model, \(Y = \beta_0 + \beta_1 X + \varepsilon \).

Note: \(X \) is completely useless in helping to predict \(Y \) if and only if \(\beta_1 = 0 \).

So to test the usefulness of the model for predicting \(Y \), we test:

If we reject \(H_0 \) and conclude \(H_a \) is true, then we conclude that \(X \) does provide information for the prediction of \(Y \).

Picture:
Recall that the estimate $\hat{\beta}_1$ is a statistic that depends on the sample data.

This $\hat{\beta}_1$ has a sampling distribution.

If our four SLR assumptions hold, the sampling distribution of $\hat{\beta}_1$ is normal with mean β_1 and standard deviation which we estimate by

Under $H_0: \beta_1 = 0$, the statistic $\frac{\hat{\beta}_1}{s / \sqrt{SS_{xx}}}$ has a t-distribution with $n - 2$ d.f.

Test for Model Usefulness

<table>
<thead>
<tr>
<th>One-Tailed Tests</th>
<th>Two-Tailed Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0: \beta_1 = 0$</td>
<td>$H_0: \beta_1 = 0$</td>
</tr>
<tr>
<td>$H_0: \beta_1 < 0$</td>
<td>$H_0: \beta_1 > 0$</td>
</tr>
</tbody>
</table>

Test statistic: $t = \frac{\hat{\beta}_1}{s / \sqrt{SS_{xx}}}$

Rejection region:

- $t < -t_\alpha$
- $t > t_\alpha$
- $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$

P-value:

- left tail area
- right tail area
- 2^\ast(tail area outside t)

outside t outside t
Example: In the drug reaction example, recall $\hat{\beta}_1 = 0.7$. Is the real β_1 significantly different from 0? (Use $\alpha = .05$.)
A $100(1 - \alpha)\%$ Confidence Interval for the true slope β_1 is given by:

where $t_{\alpha/2}$ is based on $n - 2$ d.f.

In our example, a 95% CI for β_1 is: