Many studies can be classified as binomial experiments.

Characteristics of a binomial experiment

1. The experiment consists of a number (denoted n) of identical trials.
2. There are only two possible outcomes for each trial – denoted “Success” (O_1) or “Failure” (O_2).
3. The probability of success (denoted p) is the same for each trial.

 (Probability of failure = $q = 1 - p$.)
4. The trials are independent.

Example 1: We want to estimate the probability that a pain reliever will eliminate a headache within one hour.

Example 2: We want to estimate the proportion of schools in a state that meet a national standard for excellence.

Example 3: We want to estimate the probability that a drug will reduce the chance of a side effect from cancer treatment.

- Consider a specific value of p, say p^* where $0 < p^* < 1$.

- For a test about p, our null hypothesis will be:

$$H_0: p = p^*$$
• The alternative hypothesis could be one of:

<table>
<thead>
<tr>
<th>Two-tailed</th>
<th>Lower-tailed</th>
<th>Upper-tailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1: p \neq p^*)</td>
<td>(H_1: p < p^*)</td>
<td>(H_1: p > p^*)</td>
</tr>
</tbody>
</table>

• The test statistic is \(T = \# \text{ of "successes" out of the } n \text{ trials.}\)

• The null distribution of \(T\) is simply the binomial distribution with parameters \(n\) and \(p^*\).

• Table A3 tabulates this distribution for selected parameter values (for \(n \leq 20\)).

• For examples with \(n > 20\), a normal approximation may be used, or better yet, a computer can perform the exact binomial test even with large sample sizes.

Decision Rules

• Two-tailed test: We reject \(H_0\) if \(T\) is very small or very large.

Reject \(H_0\) if \(T \leq t_1\) or \(T > t_2\).
• How to pick the numbers \(t_1 \) and \(t_2 \)?

Picture of null distribution: Binomial \((n, p^*) \) might look like:

\[
\begin{align*}
\alpha_1 \\
\alpha_2
\end{align*}
\]

\[t_1 \quad \text{and} \quad t_2\]

• From Table A3, using \(n \) and \(p^* \), find \(t_1 \) and \(t_2 \) such that

\[
P(Y \leq t_1) = \alpha_1 \quad \text{and} \quad P(Y \leq t_2) = 1 - \alpha_2
\]

\[
\Leftrightarrow P(Y > t_2) = \alpha_2
\]

where \(\alpha_1 + \alpha_2 \leq \alpha \).

• Note we need \(P(\text{Type I error}) \leq \alpha \).

• The **P-value** of the test, for an observed test statistic \(T_{\text{obs}} \), is defined as:

\[
2 \times \left[\min \left\{ P(Y \leq t_{\text{obs}}), P(Y \geq t_{\text{obs}}) \right\} \right]^2
\]

where \(Y \sim \text{Binomial}(n, p^*) \).

Use Table A3 (or computer) to find P-value.

• Lower-tailed test: We reject \(H_0 \) if \(T \) is very small.

Reject \(H_0 \) if \(T \leq t \).
• We pick the critical value t such that
 \[P(Y \leq t) \approx \alpha, \quad \text{where} \quad Y \sim \text{Bin}(n, p^*) \]

• From Table A3, using n and p^*, find t such that
 \[P(Y \leq t) \leq \alpha \]

• The P-value of the test, for an observed test statistic T_{obs}, is:
 \[P(Y \leq t_{obs}) \]

where $Y \sim \text{Binomial}(n, p^*)$.

• Upper-tailed test: We reject H_0 if T is very large.

Reject H_0 if $T > t$.

• We pick the critical value t such that
 \[P(Y \leq t) \approx 1 - \alpha \]

• From Table A3, using n and p^*, find t such that
 \[P(Y \leq t) \geq 1 - \alpha, \quad \text{so that} \quad P(Y > t) \leq \alpha \]

• The P-value of the test, for an observed test statistic T_{obs}, is:
 \[P(Y \geq t_{obs}) \]

where $Y \sim \text{Binomial}(n, p^*)$.
Example 1: The standard pain reliever eliminates headaches within one hour for 60% of consumers. A new pill is being tested, and on a random sample of 17 people, the headache is eliminated within an hour for 14 of them. At $\alpha = .05$, is the new pill significantly better than the standard?

Hypotheses:

$H_0: \ p \leq 0.6$

$H_1: \ p > 0.6$

Decision rule: Reject H_0 if $T > 13$

$P(Y \leq 13) = 0.9536$

$P(Y \leq 12) = 0.8740$

Table A3 ↑

Test statistic $T = 14 > 13$, so reject H_0.

P-value

$P(T \geq 14) = 1 - P(T \leq 13)$

$= 1 - 0.9536 = \boxed{0.0464}$

\Rightarrow P-value $\leq \alpha$, so reject H_0.

Conclusion:

We conclude at $\alpha = .05$ that the new pill has a significantly higher success probability than ≤ 0.6 (standard pill's probability).

On computer: Use `binom.test` function in R (see example code on course web page)
Example 2: In the past, 35% of all high school seniors have passed the state science exit exam. In a random sample of 19 students from one school, 8 passed the exam. At $\alpha = .05$, is the probability for this school significantly different from the overall probability?

Hypotheses:
$H_0 : \hat{p} = 0.35$
$H_1 : \hat{p} \neq 0.35$

$p^* = .35$
$n = 19$

Decision rule: Reject H_0 if $T \leq 2$ or $T > 11$

From Table A3,
$P(Y \leq 2) = .0170 \Rightarrow \alpha_1 = .0170$
$P(Y \leq 11) = .9886 \Rightarrow \alpha_2 = .0114 \Rightarrow \alpha_1 + \alpha_2 = .0284 \leq \alpha$

Test statistic $T = 8$. Note $8 \neq 2$ and $8 \neq 11$, so we do not reject H_0.

P-value =
$2 \times \left[\min \{ P(T \leq 8), P(T \geq 8) \} \right]$

$= 2 \times \left[\min \{ .8145, (1 - .6656) \} \right] = 2 \left[.3344 \right] = .6688$

Conclusion: We fail to reject H_0. At $\alpha = .05$, we cannot conclude that the passing probability for this school differs from 0.35.

On computer: Use `binom.test` function in R (see example code on course web page)
Interval Estimation of p

- The binomial distribution can be used to construct exact (even for small samples) confidence intervals for a population proportion or binomial probability.

- The Clopper-Pearson CI method inverts the test of H_0: $p = p^*$ vs. H_1: $p \neq p^*$.

- This CI consists of all values of p^* such that the above null hypothesis would not be rejected, for our given observed data set.

Example 2:
- You can verify that a p^* of 0.40 would not be rejected based on our exit-exam data.

- So 0.40 would be inside the CI for p.

- But a value for p^* like 0.90 would have been rejected, so the CI for p would not include 0.90.

- In general, finding all the values that make up the CI requires a table or computer.

- Table A4 gives two-sided confidence intervals (either 90%, 95%, or 99% CIs) for p when $n \leq 30$.

- For larger samples, for one-sided CIs, or for other confidence levels, the `binom.test` function in R gives the Clopper-Pearson CI.
Example 2 again: Find a 95% CI for the probability that a random student for this school passes the exam.

\[n = 19, \quad Y = 8 \]

95% CI for \(p \): (.203, .665)

• Using R, find a 98% CI for \(p \).

98% CI: (.173, .702)

Example 1 again: Find a 90% CI for the proportion of headaches relieved by the new pill.

\[n = 17, \quad Y = 14 \]

Table A4:

90% CI: (.604, .950)

• Using R, find a 90% one-sided lower confidence bound for \(p \).

\[p \geq 0.648 \]

\[[.648, 1] \leftarrow \text{one-sided CI} \]

• Note: The Clopper-Pearson method guarantees coverage probability of at least the nominal level. It may result in an excessively wide interval.
• The Wilson score CI approach (use \texttt{prop.test} in R) typically gives shorter intervals, but could have coverage probability less than the nominal level.