STAT 518 ---- Section 4.2 ---- Tests for $r \times c$ Tables

• We now consider more general two-way tables:

• In Sec. 4.1 we had <u>two</u> samples in which a <u>two-</u> <u>category</u> variable is measured on each individual in each sample.

Comparing Multinomial Probabilities Across Several Independent Samples

• Suppose we have *r* independent samples, with respective sizes $n_1, n_2, ..., n_r$. We classify each individual in each sample into class 1, 2, ..., *c*.

• Our data (which could be nominal or ordinal) could be arranged in an $r \times c$ table as follows:

Chi-Square Test for Homogeneity in a Two-Way Table

• This is a basic extension of the two-tailed z-test comparing p_1 and p_2 .

Hypotheses:

Test Statistic

which has an asymptotic _____ distribution with _____ degrees of freedom when H_0 is true.

• Note if H₀ is true and all the populations have the same set of class probabilities, the expected count in cell (*i*, *j*) is the ______ times ______

• If r = c = 2, this T = from Section 4.1.

• If T is far from zero, this indicates that

Decision Rule:

• The P-value is found through interpolation in Table A2 or using R.

• Note: The χ^2 approximation for *T* is valid for large samples, say, if

• If some expected cell counts are too small, two or more categories could be combined, as long as this is sensible.

Example 1: Page 202 gives test score category counts from a sample of public school students and from a sample of private school students. Is the probability distribution of scores equal for public and private school students? Use $\alpha = 0.05$.

Data:			<u>Score</u>	
	Low	Marginal	Good	Excellent
Private	6	14	17	9
Public	30	32	17	3
H ₀ :		H_1 :		

Test statistic:

Decision rule and conclusion:

P-value

Chi-Square Test for Independence

• Now we consider observations in a single sample of size *N* that are classified according to <u>two</u> categorical variables.

• Such data can also be presented in a two-way table.

Example: Suppose the people in the "favorite-sport" survey had been further classified by gender:

• Two categorical variables: _____ and _____

<u>Question</u>: Are the two classifications independent or dependent?

• For instance, does people's favorite sport depend on their gender? Or does gender have no association with favorite sport?

• Unlike the *r*-sample problem, in this situation both column totals <u>and</u> row totals are random (only *N* is fixed).

	(<i>r</i> = ‡	f of rows	, c = #	of columns)
	<u>Co</u>	lumn Va	<u>riable</u>	
	1	2	С	Row Totals
	$1 O_{11}$	<i>O</i> ₁₂	O _{1c}	$ R_1 $
Row	$2 O_{21}$	<i>O</i> ₂₂	O _{2c}	$ R_2 $
	• •	•	•	•

Observed Counts for a *r* × *c* Contingency Table (*r* = # of rows, *c* = # of columns)

Variable :	•	•		•	:
r	<u> 0</u> r1	<u><i>O</i></u> _{r2}	•••	<u>0</u> rc_	<u> <i>R</i></u> _r
Col. Totals	$ C_1 $	\overline{C}_2	•••	$\overline{C_{c}}$	N

	<u>Column Variable</u>					
		1	2	•••	C	
	1	<i>p</i> ₁₁	p ₁₂	•••	p _{1c}	$p_{\text{row 1}}$
Row	2	$ p_{21} $	p ₂₂	•••	p_{2c}	$ p_{\text{row 2}} $
	٠	•	•		•	•
<u>Variable</u>	•	•	•		•	•
	r	<u>p</u> r1	<u><i>p</i></u> _{r2}	•••	<u></u> rc	<u>p</u> row r
		$ p_{col 1} $	$p_{\rm col}$	2 •••	$p_{ m col\ c}$	1

• Note: If the two classifications are <u>independent</u>, then: $p_{11} = (p_{row 1})(p_{col 1})$ and $p_{12} = (p_{row 1})(p_{col 2})$, etc.

• So under the hypothesis of independence, we expect the cell probabilities to be the product of the corresponding <u>marginal probabilities</u>: Hence if H_0 is true, the (estimated) expected count in cell (i, j) is simply:

 χ^2 test for independence

H₀: The classifications are independentH_a: The classifications are dependent

Test statistic:

where the expected count in cell (i, j) is

Decision Rule:

• The P-value is found through interpolation in Table A2 or using R.

Note: The same large-sample rule of thumb applies as in the previous χ^2 test.

Example: Does the incidence of heart disease depend on snoring pattern? (Test using $\alpha = .05$.) Random sample of 2484 adults taken; results given in a <u>contingency table</u>:

		Snoring Pattern				
		Never	Occasionally	≈Every Night		
Heart	Yes	24	35	51	110	
Disease	No	1355	603	416	2374	
		1379	638	467	2484	

Expected Cell Counts:

Test statistic:

Decision rule and conclusion:

P-value

Tests for $r \times c$ Tables with Fixed Marginal Totals

• If the table has *r* rows and *c* columns and both the row totals and column totals are fixed, an extended version of the Exact Test is available.

• In this case, there are no one-tailed alternatives possible – the hypotheses are simply

• The P-value are obtained using fisher.test in R, as the exact null distribution is cumbersome.

• The exact P-value is obtained by considering all possible tables resulting in the given margins, and sorting these by how favorable to H₁ they are.

• The exact P-value is the proportion of possible tables that are ______ favorable to H₁ as the table we observed.

Example Data (alteration of bank data to a 3 \times 3 table):

P-value and conclusion:

Section 4.3 --- Median Test

• We return to the situation in which we want to know whether several (*c*) populations have the same median.

• For *c* > 2, this is similar to the setup of the _____ test.

• For *c* = 2, this is similar to the setup of the _____ test.

• The difference is in the <u>conditions</u> of the tests: The M-W and K-W tests assume that under H₀,

while the Median Test assumes only that under H₀,

• Suppose from each of *c* populations, we have a random sample, with sizes $n_1, n_2, ..., n_c$.

• We assume that the *c* samples are independent and that the data are at least ordinal, so that the "median" is a meaningful measure.

• Calculate the grand median of all $N = n_1 + n_2 + ... + n_c$ observations, and arrange the data into a $2 \times c$ table: **Hypotheses:**

• The null hypothesis implies that being in the top row or bottom row is independent of which column (population) an observation is in.

• Note that the expected cell count under H₀ is

for the top-row cells, and

for the bottom-row cells.

So the test statistic, as in the χ^2 test for independence, is

which can be simplified into

since

• The asymptotic null distribution of *T* is

Decision rule:

• The P-value is found through interpolation in Table A2 or using R.

Note: The same large-sample rule of thumb applies as in the previous χ^2 test.

• The median test may be generalized to test about any particular quantile – in that case, the appropriate "grand quantile" is used instead of the "grand median".

Example 1: Bidding/Buy-It-Now Data from Section 5.1 notes. At $\alpha = .05$, are the median selling prices significantly different for the two groups? Data: Bidding: 199, 210, 228, 232, 245, 246, 246, 249, 255 BIN: 210, 225, 225, 235, 240, 250, 251

Grand Median: $c = _$. 2 × c table:

Test statistic *T* =

Decision Rule and Conclusion:

P-value

Example 2: Data on page 221 gives corn yields for four different growing methods. At $\alpha = .05$, are the median yields significantly different for the four methods?

Grand Median: $c = _$. 2 × c table:

Test statistic

Decision Rule and Conclusion:

P-value

Comparison of Median Test to Competing Tests

• The classical parametric approach for comparing the centers of several populations is the _____.

• In Sec. 5.1 we examined the efficiency of the Mann-Whitney test relative to the median test when c = 2.

• Of these options, the median test is the most flexible since it makes the fewest assumptions about the data.

• The A.R.E. of the median test relative to the F-test is _____ with normal populations and ______ with double exponential (heavy-tailed) populations.