Many tests for contingency tables use the “Pearson’s Chi-square Statistic”:

An alternative approach uses the “Likelihood Ratio Chi-square Statistic”:

The LR statistic also has an asymptotic χ^2 distribution, with the same degrees of freedom as Pearson’s statistic.

An advantage of the Pearson test statistic is that its asymptotic χ^2 distribution tends to be valid with smaller sample sizes (i.e., when _________) than the χ^2 approximation for the LR statistic (which holds well when ______________).

Loglinear Models

This is a common method of analyzing contingency tables of more than two dimensions.

In a 2×2 table, the null hypothesis of independence between dimensions is equivalent to
where $p_{i+} =$

and $p_{+j} =$

• Taking logarithms of both sides, we get:

which is a _________________ model.

Recall: Our expected cell count under independence is

where $n_{i+} =$

and $n_{+j} =$

• Thus for a 2×2 table,

and so we have

• This fraction is called the **odds ratio**.

It is defined as
• Now, if we instead have dependence between dimensions, that implies:

• Writing the loglinear model in terms of the cell counts rather than cell probabilities, we have:

 under independence

 under dependence

• These model parameters are estimated using software via iterative methods.

• Using the estimates, we can get fitted values for each cell.
• We then use either the Pearson statistic or the LR statistic to determine (with a χ^2 test) whether the model provides a good fit. H_0:

 Three-Way Tables

• This is most useful in cases where the data are classified according to three categorical variables.

Example 1 (2 × 2 × 2 table):
Possible loglinear models for $2 \times 2 \times 2$ tables:

Example 1: Let $i = 1, 2$ be the level of Cigarette Use (Yes/No); let $j = 1, 2$ be the level of Marijuana Use; let $k = 1, 2$ be the level of Alcohol Use.

- The model that includes all possible parameters is called the _________________ model.
- The `loglm` function in the MASS library in R estimates the parameters of any of these models, calculates the fitted values, and performs the χ^2 tests for fit.
- In addition, the `step` function evaluates these possible models based on Akaike’s Information Criterion (AIC).
Example 1 Possible Questions of Interest:
• Do the odds of a cigarette smoker using marijuana differ from the odds of a cigarette non-smoker using marijuana? →

• Does the value of this odds ratio depend on alcohol use? →

Analysis in R:
• The best model appears to be

• Example of fitted value calculation using estimated coefficients:

• Interpretation of results is best done using odds ratios:
Example 2 (2 × 2 × 2 table):

Example 2 Possible Questions of Interest:
• Do the odds of an early plant surviving differ from the odds of a late plant surviving? →

• Does the value of this odds ratio depend on the cutting length? →

Analysis in R:
• The search for the best model:

• Interpretation of results via odds ratios:
Example 3 (2 × 2 × 4 table): After the sinking of the Titanic, a study classified passengers according to Survival Status (Yes/No), Sex (Male/Female), and Class (1st/2nd/3rd/Crew). We adapt a built-in R data set.

Example 3 Possible Questions of Interest:
• Do the odds of a female surviving differ from the odds of a male surviving? →

• Does the value of this odds ratio depend on the class of the passenger? →

Analysis in R:
• The search for the best model:

• Interpretation of results via odds ratios: