STAT 518 --- Section 5.5: Distribution-Free Tests
in Regression

» Suppose we gather data on two random variables.

* We wish to determine: Is there a relationship between
the two r.v.’s? (correlation and/or regression)

e Can we use the values of one r.v. (say, X) to predict the
other r.v. (say, Y)? (regression)

» Often we assume a straight-line relationship between
two variables.

 This is known as simple linear regression.

Example 1: We want to predict Y = breathalyzer
reading based on X = amount of alcohol consumed.
Example 2: We want to estimate the effect of a
medication dosage on the blood pressure of a patient.
Example 3: We want to predict a college applicant’s
college GPA based on his/her SAT score.

 This again assumes we have paired data (Xi, Y1),
(X2, Y2), ..., (Xn, Yn) for the two related variables.

Linear Regression Model

 The linear regression model assumes that the mean of
Y (for a specific value x of X) varies linearly with x:

o= and B =



» These parameters are unknown and must be estimated
using sample data.

 Estimating the unknown parameters is also called
fitting the regression model.

Fitting the Model (Least Squares Method)

o If we gather data (X, Yi) for several individuals, we
can use these data to estimate o and B and thus estimate
the linear relationship between Y and X.

* Once we settle on the “best-fitting” regression line, its
equation gives a predicted Y-value for any new X-value:

* How do we decide, given a data set, which values a and
b produce the best-fitting line?

 For each point, the error =
(Some positive errors, some negative errors)

* We want the line that makes these errors as small as
possible (so that the line is “close” to the points).

L east-squares method: We choose the line that
minimizes the sum of all the squared errors (SSE).

Least squares estimates a and b:



 This least-squares method is completely distribution-
free.

* In classical models, we must assume
of the data in order to perform parametric inference.

« Since the slope B describes the marginal effect of X on
Y, we are most often interested in hypothesis tests and

confidence intervals about .

e |f the data are normal, these are based on the
t-distribution.

o If the data’s distribution is unknown, we can use a
nonparametric approach.

» \We must assume only that the Y’s are independent,
identically distributed, and that the Y’s and X’s are at

least interval in measurement scale.
o \We further assume that the residual

A Distribution-Free Test about the Slope
* Let o be some hypothesized value for the slope.

 For each bivariate observation, compute

and calculate the Spearman’s rho for the pairs



Hypotheses and Decision Rules

Two-tailed Lower-tailed Upper-tailed

A Distribution-Free Confidence Interval for the Slope

 For each pair of points

compute the “two-point slope”:

* There are, say, N such “two-point slopes”.

* Let the ordered two-point slopes be:

e For a (1 - a)100% CI, find w1 _ 42 from Table A1l and
define r and s as:

 If r and s are not integers, round r down to the next
smallest integer and round s up to the next largest
integer (in order to produce a conservative CI).



e The (1 - a)100% CI for B is then

» This CI will have coverage probability of at least 1 — a.

Example 1 (GMAT/GPA data): Recall example from
Section 5.4. Suppose a national study reports that an
increase of 40 points in GMAT score yields a 0.4
expected increase in GPA. Does this sample provide

evidence against that claim? (Use o = 0.05.)



* In cases with severe outliers, the least-squares
estimated slope can be severely affected by such
outliers. An alternative set of regression estimates was
suggested by Theil:

Example 2: For several levels of drug dosage (X), a
lipid measure (Y) is taken. The data are:

X1 2 3 4 5 6 7

Y: 25 31 34 40 46 11.15.1

 See R code for example plots using the least-squares
line and Theil’s regression line.

» The point estimator of the slope in Theil’s method is
called the Hodges-Lehmann estimator.

Comparison to Competing Tests

* When the distribution of (X, Y) is bivariate normal
and the X;’s are equally spaced, the nonparametric test
for the slope has A.R.E. of relative to the
classical t-test.

* In general, this A.R.E. is always at least




Nonparametric Regression

* Section 5.6 gives a rank-based procedure for
estimating a regression function when the function is
unknown and nonlinear BUT known to be monotonic.

* Here we will examine a distribution-free method of
estimating a very general type of regression function.

 In nonparametric regression, we assume very little
about the functional form of the regression function.

* We assume the model:

where f () is unknown but is typically assumed to be a
smooth and continuous function.
» \We also assume independence for the residuals

Goal: Estimate the mean response function f (-).

Advantages of Nonparametric Regression

» Useful when we cannot know the relationship between
Y and X

» More flexible type of regression model

« Can account for unusual behavior in the data

e Less likely to have bias resulting from wrong model
being chosen



Disadvantages of Nonparametric Regression

* Not as easy to interpret

* No easy way to describe relationship between Y and X
with a formula (must be done with a graph)

e Inference is not as straightforward

Note: Nonparametric regression is sometimes called

Kernel Regression

» The idea behind kernel regression is to estimate f (x) at
each value x* along the horizontal axis.

» At each value x*, the estimate IS simply an

» Consider a “window’ of points centered at x*:



e The width of this window is called the

» At each different x*, the window of points

to the left or right

e Better idea: Use

 This can be done using a function
known as a kernel.

e Then, for any x*,

where the weights

K () is a kernel function, which typically is a density
function symmetric about 0.

A = bandwidth, which controls the smoothness of the
estimate of f (x).

Possible choices of kernel:



Pictures:

Note: The Nadaraya-Watson estimator

Is a modification that assures that the weights for the
Yi’s will sum to one.

» The choice of bandwidth A is of more practical
importance than the choice of kernel.

e The bandwidth controls how many data values are
used to compute f (x*) at each x*.

Large A —

Small A —



» Choosing A too large results in an estimate that
the true nature of the relationship
between Y and X.

» Choosing A too small results in an estimate that
follows the “noise” in the data too closely.

 Often the best choice of A is made through visual
inspection (pick the roughest estimate that does not
fluctuate implausibly?).

» Automatic bandwidth selection methods such as cross-

validation are also available — this chooses the A that
minimizes a mean squared prediction error.

Example: We have data on the horsepower (X) and gas
mileage (Y, in miles per gallon) of 82 cars, from
Heavenrich et al. (1991).

e On computer: The R function ksmooth performs
kernel regression (see web page for examples with
various kernel functions and bandwidths).



