STAT 518 --- Chapter 6 --- Goodness-of-Fit Tests

- Often in statistics, we assume a sample comes from a particular distribution.

- Goodness-of-fit tests help us determine whether the assumed distribution is reasonable for the data we have.

Section 6.1: Kolmogorov Goodness-of-Fit Test

- Recall that the empirical distribution function (e.d.f.)
 \[\hat{F}(x) = S(x) \]
 is book's notation of a sample is an estimate of the cumulative distribution function (c.d.f.)
 \[F(x) = P(X \leq x) \quad \text{for all } x \]
 for the population that the sample came from.

- If \(S(x) \) is close to the c.d.f. \(F^*(x) \) of our assumed distribution, then our assumption is reasonable.

- If \(S(x) \) is far from the c.d.f. \(F^*(x) \) of our assumed distribution, then our assumption should be rejected.

Picture:
• How to measure the distance between $S(x)$ and $F^*(x)$?

• Kolmogorov suggested using the maximum vertical discrepancy between $S(x)$ and $F^*(x)$ as a test statistic:

$$T = \sup_x \left| F^*(x) - S(x) \right|$$

• In Chapter 6 we will see several tests that use a type of maximum vertical discrepancy.

• For the Kolmogorov Goodness-of-Fit test, we assume only that we have a random sample X_1, X_2, \ldots, X_n.

Test Statistic (depends on the alternative hypothesis):

(Two-Sided) $$T = \sup_x \left| F^*(x) - S(x) \right|$$

(One-Sided) $$T^+ = \sup_x \left(F^*(x) - S(x) \right)$$

(One-Sided) $$T^- = \sup_x \left(S(x) - F^*(x) \right)$$

• The null distribution of T is tabulated in Table A13 for $n \leq 40$.

• This approach is exact if $F(x)$ is continuous and conservative if $F(x)$ is discrete.

• Pages 435-436 describe an adjustment to improve the test if $F(x)$ is discrete, but we will not cover this.

• If $n > 40$, an asymptotic null distribution can be used (see equation (5) on page 431).
Possible Hypotheses and Decision Rules

\[H_0: F(x) = F^*(x) \quad \text{for all } x \]
\[H_0: F(x) \geq F^*(x) \quad \text{for all } x \]
\[H_1: F(x) \neq F^*(x) \quad \text{for some } x \]
\[H_1: F(x) < F^*(x) \quad \text{for some } x \]

- The corresponding rejection rules in each case are:
 \[T > W_{1-\alpha} \quad \text{Reject } H_0 \text{ if} \]
 \[T^+ > W_{1-\alpha} \quad \text{Reject } H_0 \text{ if} \]
 \[T^- > W_{1-\alpha} \quad \text{Reject } H_0 \text{ if} \]

Table A13, 2-sided, Table A13, One-sided, Table A13, One-sided

- The P-values for each case are approximated by interpolation within Table A13 or found using R.

Example 1: Ten observations are obtained in a sample which supposedly comes from a Uniform(0, 1) distribution. The sorted sample is: 0.203, 0.329, 0.382, 0.477, 0.480, 0.503, 0.554, 0.581, 0.621, 0.710. Is there evidence that the hypothesized distribution is incorrect? (Use \(\alpha = 0.05 \).)

Picture:

\[F^*(x) \quad \text{(the cdf of Uniform(0,1) r.v.)} \]

\[H_0: F(x) = F^*(x) \quad \text{vs.} \quad H_1: F(x) \neq F^*(x) \quad \text{for some } x \]

Test statistic: \(T = 0.29 \) from R.

Decision rule: Reject \(H_0 \) if \(T > W_{0.95} = 0.409 \) (Table A13, 2-sided)

P-value \(\approx 0.307 \) from R. Since 0.29 < 0.409, we fail to reject \(H_0 \). Conclude that the Uniform(0,1) distribution is reasonable for these data.
Example 2: A medical team collecting counts of tumors on kidneys has used a Poisson(1.75) distribution to model the counts in the past. They gather such counts on 18 kidneys and obtain this sample: 2, 2, 4, 1, 3, 1, 4, 0, 2, 2, 1, 1, 0, 2, 2, 3, 3, 3. Is there evidence that the count distribution is actually stochastically larger than previously thought? (Use $\alpha = .05$.)

Stochastically larger than previous

\[\Rightarrow \text{For any } x, \text{"Real } P(X > x)" > \text{"Previous } P(X > x)" \]
\[\Rightarrow \text{"Real } P(X \leq x)" < \text{"Assumed } P(X \leq x)" \]
\[\Rightarrow H_1: \text{is: } F_0(x) < F^*(x) \text{ The Pois (1.75) cdf} \]
\[H_0: F(x) \geq F^*(x) \text{ for all } x \text{ vs. } H_1: F(x) < F^*(x) \text{ for some } x. \]

Decision Rule: Reject H_0 if $T^+ > W_{.95} = 0.279$ (one-sided).

Test Statistic: $T^+ = 0.4106$ from R.

Since $.4106 > .279$, reject the H_0 and conclude the true distribution tends to produce larger counts than the Pois(1.75) distribution. P-value $\approx .0015$ from R.

In R, see the function `ks.test` to perform this test.

A Confidence Band for the True Population c.d.f.

- From Table A13, it is easy to obtain an upper function and lower function that form a $(1 - \alpha)100\%$ confidence band.

- We can be, say, 95% confident that the entire true c.d.f. will fall within the 95% confidence band.
• To form the band, simply draw the e.d.f \(S(x) \), and add \(w_{1-\alpha} \) from Table A13 (two-sided) to each point to form the upper boundary of the band.

• Subtract \(w_{1-\alpha} \) from \(S(x) \) at each point to form the lower boundary.

• If \(S(x) - w_{1-\alpha} \) goes below 0, simply draw the lower boundary at 0 in those places.

• If \(S(x) + w_{1-\alpha} \) exceeds 1, simply draw the upper boundary at 1 in those places.

• See example in R using Example 1 data.

Properties of the Kolmogorov Test

• The two-sided Kolmogorov test is \underline{consistent} against all differences between the hypothesized \(F^*(x) \) and the true \(F(x) \).

• However, the test is \underline{biased} for finite sample sizes.

• The Kolmogorov test is \underline{more powerful} than the chi-squared goodness-of-fit test (covered in Chapter 4) when the data are ordinal.

• The Kolmogorov test is exact even for small samples, while the chi-square test requires a large sample size.