
STAT 704 --- Chapter 1:  Regression Models 

 

Model: A mathematical approximation of the relationship between 

two or more real quantities. 

 

• We have seen several models for a single variable. 

• We now consider models relating two or more variables. 

 

Simple Linear Regression Model 

 

• Involves a statistical relationship between a response variable 

(denoted Y) and a predictor variable (denoted X). 

(Also known as 

 

• Statistical relationship:  Not a perfect line or curve, but a general 

tendency. 

• Shown graphically with a scatter plot: 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

• Must decide what is the proper functional form for this 

relationship.  Linear? Curved? Piecewise? 

 

 

 



Statement of SLR Model:  For a sample of data (X1, Y1), …, (Xn, Yn): 

 

 

 

 

 

 

 

 

 

 

 

 

 

• This model assumes Y and X are  

 

• It is also 

 

Assumptions about the random errors: 

• We assume  

 

 
 

 

Note:  iX10    is the deterministic component of the model.  It is 

assumed constant (not random). 

i  is the random component of the model.   

 

Therefore: 

 

 

 

 

 

Also, 



Example (p.11): 

 

(see picture)  When X = 45, our expected Y-value is 104, but we 

might observe a Y-value “somewhere around” 104 when X = 45. 

 

Note that our model may also be written using matrix notation: 

 

 

 

 

 

 

 

 

 

 

• This will be valuable later. 

 

Estimation of the Regression Function 

 

• In reality, 0, 1 are unknown parameters; we can estimate them 

through our sample data (X1, Y1), …, (Xn, Yn). 

• Typically we cannot find values of 0, 1 such that  

for every (Xi, Yi). 

(No line goes through all the points) 

 

Picture: 

 

 

 

 

 

 

 



Least squares method:  Estimate 0, 1 using the values that 

minimize the sum of the n squared deviations 

 

Goal:  Minimize 

 

• Calculus shows that the estimators (call them b0 and b1) that 

minimize this criterion are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Then XbbY 10
ˆ   is called the least-squares estimated regression 

line. 

• Why are the “least-squares estimators” b0 and b1 “good”? 

 

(1) 

 

(2) 

 

 

 

Example in book (p. 15) 

X = age of subject (in years) 

Y = number of attempts to accomplish task 

Data:  X: 20 55 30 

  Y: 5 12 10 

 

Can verify:  For these data, the least squares line is 

 

Note:  For the first observation, with X = 20, the fitted value Ŷ        

attempts.  The fitted value Ŷ  is an estimator of the  

 

 

Interpretation: 

 

 

 

 

Interpretation of b1: 

 

 

 
 

 

 

 



• The residual (for each observation) is the difference between the 

observed Y value and the fitted value: 

 

 

• The residual ei is a type of “estimate” of the unobservable error 

term i . 

 

Note:  For the least-squares line, 

 

 

Proof: 

 

 

 

Other Properties of the Least-Squares Line: 

 

 

 
 

• The least-squares line always 

 

 

 

Estimating the Error Variance 2 

• Since var(Yi) = 2 (an unknown parameter), we need to estimate 2 

to perform inferences about the regression line. 

 

Recall:  With a single sample Y1,…, Yn , our estimate of var(Y) was 

 

 

 

 
 

• In regression, we estimate the mean of Y not by 

but rather by 



• So an estimate of var(Yi) = 2 is 

 

 

 

 

Why n – 2? 

 

 

 

E(MSE) =  

 

MSEs   is an estimator of 

 

Pg. 15 example: 

 

(can calculate automatically in R or SAS) 

 

Normal Error Regression Model 

• We have found the least-squares estimates using our previously 

stated assumptions about i . 

• To perform inference about the regression relationship, we make 

another assumption: 

 

 

Assume i  are  

 

 

• This implies the response values Yi are 

 

 

 

Fact:  Under the assumption of normality, our least-squares 

estimators b0 and b1 are also  



Why?  Likelihood function = product of the density functions for the 

n observations (considered as a function of the parameters) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• When is this likelihood function maximized? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Assuming the normal-error regression model, we may obtain CIs 

and hypothesis tests. 


