Inference about the slope β_1:
• It can be shown that the sampling distribution of b_1 is

Proof:
• So

but σ^2 is unknown, so we estimate it with

Then

Hence, a $(1 - \alpha)100\%$ CI for β_1 is:

Note that testing $H_0: \beta_1 = 0$ is often important in SLR.

• Under the SLR model $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, if $\beta_1 = 0$, then

• In that case, X is

To test $H_0: \beta_1 = 0$ at significance level α, we use the test statistic:

Rejection rule and P-value depend on the alternative hypothesis:
• What if we want to test a nonzero value of β_1, e.g., $H_0: \beta_1 = 3$?

• Typically we find these CIs and t^* and P-values using SAS or R.

Example (Toluca refrigeration company):
$X = \text{Lot Size (to produce a certain part)}$
$Y = \text{Work Hours (needed to produce a certain part)}$

Interval Estimation of $E(Y_h)$
• We often wish to estimate the mean Y-value at a particular X-value, say X_h.
• We know a point estimate for this mean $E(Y_h)$ is simply

• This estimate has variability depending on which sample we obtain. (Why?)

• To account for the variability, we develop a CI for $E(Y_h)$.
Note: \(\hat{Y}_h \) is a so \(\hat{Y}_h \) has a

- So estimating \(\sigma^2 \) with MSE and using earlier principles, a \((1 - \alpha)100\% \) CI for \(E(Y_h) \) is:

- Note this CI is narrowest when and gets wider

Prediction Interval for \(Y \)-value of a New Observation
- Suppose we have a new data point with \(X = X_h \).
- We wish to predict the \(Y \)-value for this observation.
- Point prediction is

- What about a prediction interval?
- There are two sources of sampling variability for this predicted \(Y \):
 (1)

(2)

- Our CI for \(E(Y_h) \) only involved the first source.
- Our Prediction Interval for \(Y_{h(new)} \) will be __________

- Variance of the prediction error is:
Estimating σ^2 with MSE, our $(1 - \alpha)100\%$ PI for $Y_{h(new)}$ is:

Example (Toluca data):
• With a 90% CI, estimate the mean number of work hours for lots of size 65 units.

• With a 90% PI, predict the number of work hours for a new lot having size 65 units.

Note: Working and Hotelling developed $100(1 - \alpha)\%$ confidence bands for the entire regression line. (see Sec. 2.6 for details)
Analysis of Variance Approach to Regression

• Our regression line is a way to use the predictor (X) to explain how the response (Y) varies.
• This can be represented mathematically by partitioning the total sum of squares (SSTO).

\[\text{SSTO} = \sum (Y_i - \bar{Y})^2 \]

is a measure of the total (sample) variation in the Y variable.
• Note SSTO =

Picture:

• When we account for X,

we would use

\[\text{SSE} = \sum (Y_i - \hat{Y}_i)^2 \]

is a measure of how much Y varies around the regression line.

\[\text{SSR} = \]

SSR measures how much of the variability in Y is explained by the regression line (by Y’s linear relationship with X).

• Thus SSE measures

Degrees of freedom:
• To directly compare “explained variation” to “unexplained variation,” we must divide by the proper d.f. to obtain the corresponding mean square:

If MSR >> MSE, then the regression line explains a lot of the variation in Y, and we say the regression line fits the data well.

Summary: ANOVA Table

• Note the expected Mean Squares: MSR is expected to be large than MSE if and only if

• So testing whether the SLR model explains a significant amount of the variation in Y is equivalent to testing

• Consider the ratio MSR / MSE. If H_0 is true, we expect this to be near

• If H_0 is true, this ratio has

Leads us to
Test statistic

RR:

• Note that $F^* = (t^*)^2$ and that this F-test (in SLR) is equivalent to the t-test of $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$.

Example:

General Linear Test

• Note if $H_0: \beta_1 = 0$ holds, our “reduced model” is

• It can be shown that the least-squares estimate of β_0 here is

• Thus SSE for the reduced model is

• Note that the SSE(R) can never be less than the SSE for the full model, SSE(F).
 • Including a predictor can never cause the model to explain less variation in Y.

→

• If SSE(R) is only a little more than SSE(F), then the predictor is

• We can generally test this with an F-test:
• This principle of comparing SSE(R) and SSE(F) based on “reduced” and “full” models will be used often in more advanced regression models.

\[R^2 \text{ and } r \]

• The coefficient of determination is the proportion of total sample variation in \(Y \) that is explained by its linear relationship with \(X \).

• The closer \(R^2 \) is to 1, the

Correlation coefficient \(r = \)

• Note

Values of \(r \) near 0 →

Values of \(r \) near 1 →

Values of \(r \) near \(-1\) →

Cautions about \(R^2 \) and \(r \):
• \(R^2 \) could be high, but predictions may not be precise.
• \(R^2 \) could be high, but the linear regression model may not be the best fit

• \(R^2 \) and \(r \) could be near 0, but \(X \) and \(Y \) could still be related
• R^2 can be inflated when sample X values are widely spaced

Example (Toluca data):

Correlation Models
• In regression models:

• If we simply have two continuous variables X and Y without natural response/predictor roles, a correlation model may be appropriate.
• Convenience store example:

• If appropriate, we could assume X and Y have a bivariate normal distribution.
• Five parameters:
• Investigation of the linear association between X and Y is done through inferences on ρ_{XY}.
• r is a point estimate of ρ_{XY}.
• Testing $H_0: \rho_{XY} = 0$ is equivalent to

• A CI for ρ_{XY} requires Fisher’s z-transformation:

For large samples, a $(1 - \alpha)100\%$ CI for
• Then use Table B.8 in book to back-transform endpoints to get CI for ρ_{XY}.

Example:

Cautions about Regression

• When predicting future values, the conditions affecting Y and X should remain similar for the prediction to be trustworthy.

• Beware of extrapolation (predicting Y for values of X outside the range of X in the data set). The relationship observed between Y and X may not hold for such X values.

• Concluding that Y and X are linearly related (that $\beta_1 \neq 0$) does not imply a causal relationship between X and Y.

• Beware of making multiple predictions or inferences simultaneously – generally the Type I error rate is affected.

• The least-squares estimates are not unbiased if X is measured with error.
• This is when the X values we observe in our data are not the true predictor values for those observations.
• In this case, the estimated coefficients are biased toward zero.
• Advanced techniques are needed to deal with this issue.