
STAT 704 --- Chapter 2:  Inference in Regression  

 

Inference about the slope 1:  

• It can be shown that the sampling distribution of b1 is 

 

 

 

 

Proof: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



• So  

 

 

but 2 is unknown, so we estimate it with 

 

Then 

 

 

 

Hence, a (1 – )100% CI for 1 is: 

 

 

 

 

Note that testing H0: 1 = 0 is often important in SLR. 

• Under the SLR model iii XY   10 , if 1 = 0, then 

 

 

• In that case, X is 

 

 

To test H0: 1 = 0 at significance level , we use the test statistic: 

 

 

 

 

 

Rejection rule and P-value depend on the alternative hypothesis: 

 

 

 

 

 

 



• What if we want to test a nonzero value of 1, e.g., H0: 1 = 3? 

 
 

• Typically we find these CIs and t* and P-values using SAS or R. 

 

Example (Toluca refrigeration company): 

X = Lot Size (to produce a certain part) 

Y = Work Hours (needed to produce a certain part) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interval Estimation of E(Yh) 

• We often wish to estimate the mean Y-value at a particular X-

value, say Xh. 

• We know a point estimate for this mean E(Yh) is simply 

 

 

 

• This estimate has variability depending on which sample we 

obtain.  (Why?) 

 

 

 

• To account for the variability, we develop a CI for E(Yh). 



Note:  hŶ  is a  

so hŶ  has a 

 

 

 

• So estimating 2 with MSE and using earlier principles,  

a (1 – )100% CI for E(Yh) is: 

 

 

 

 

• Note this CI is narrowest when                              and gets wider 

 

 

Prediction Interval for Y-value of a New Observation 

• Suppose we have a new data point with X = Xh. 

• We wish to predict the Y-value for this observation. 

• Point prediction is 

 

• What about a prediction interval? 

• There are two sources of sampling variability for this predicted Y: 

(1) 

 

 

 

(2) 

 

 

• Our CI for E(Yh) only involved the first source. 

• Our Prediction Interval for Yh(new) will be _________ 

 

• Variance of the prediction error is: 

 

 



Estimating 2 with MSE, our (1 – )100% PI for Yh(new) is: 

 

 

 

 

Example (Toluca data):   

• With a 90% CI, estimate the mean number of work hours for lots 

of size 65 units. 

 

 

 

 

 

• With a 90% PI, predict the number of work hours for a new lot 

having size 65 units. 

 

 

 

 

 

 

 

 

 

 

Note:  Working and Hotelling developed 100(1 – )% confidence 

bands for the entire regression line. 

(see Sec. 2.6 for details) 

 

Picture: 

 

 

 

 

 



Analysis of Variance Approach to Regression 

• Our regression line is a way to use the predictor (X) to explain how 

the response (Y) varies. 

• This can be represented mathematically by partitioning the total 

sum of squares (SSTO). 

 

SSTO = 
2)( YYi   is a measure of the total (sample) variation in 

the Y variable. 

• Note SSTO = 

         Picture: 

• When we account for X,  

 

we would use 

 

 

 

SSE = 
2)ˆ( ii YY   is a measure of how much Y varies around the 

regression line. 

 

SSR =  

 

SSR measures how much of the variability in Y is explained by the 

regression line (by Y’s linear relationship with X). 

 

• Thus SSE measures 

 

 

Degrees of freedom: 

 

 

 

 

 

 



• To directly compare “explained variation” to “unexplained 

variation,” we must divide by the proper d.f. to obtain the 

corresponding mean square: 

 

 

 

 

 

If MSR >> MSE, then the regression line explains a lot of the 

variation in Y, and we say the regression line fits the data well. 

 

Summary:  ANOVA Table 

 

 

 

 

 

 

 

• Note the expected Mean Squares:  MSR is expected to be large 

than MSE if and only if 

 

• So testing whether the SLR model explains a significant amount of 

the variation in Y is equivalent to testing 

 

 

• Consider the ratio MSR / MSE.  If H0 is true, we expect this to be 

near 

 

• If H0 is true, this ratio has 

 

 

Leads us to 

 

 



Test statistic 

 

RR: 

 

• Note that F* = (t*)2 and that this F-test (in SLR) is equivalent to 

the t-test of H0: 1 = 0 vs. Ha: 1 ≠ 0. 

 

Example:   

 

 

 

 

 

General Linear Test 

• Note if H0: 1 = 0 holds, our “reduced model” is  

 

• It can be shown that the least-squares estimate of 0 here is 

 

• Thus SSE for the reduced model is 

 

 

• Note that the SSE(R) can never be less than the SSE for the full 

model, SSE(F). 

• Including a predictor can never cause the model to explain less 

variation in Y. 

 

→  

• If SSE(R) is only a little more than SSE(F), then the predictor is  

 

 

• We can generally test this with an F-test: 

 

 

 

 



• This principle of comparing SSE(R) and SSE(F) based on 

“reduced” and “full” models will be used often in more advanced 

regression models. 

 

R2 and r 

 

• The coefficient of determination  

is the proportion of total sample variation in Y that is explained by 

its linear relationship with X. 

 

 

 

 

 

 

• The closer R2 is to 1, the  

 

 

Correlation coefficient r = 

 

• Note 

 

Values of r near 0 →  

 

Values of r near 1 →  

 

Values of r near –1 →  

 

Cautions about R2 and r: 

• R2 could be high, but predictions may not be precise. 

• R2 could be high, but the linear regression model may not be the 

best fit 

 

• R2 and r could be near 0, but X and Y could still be related 

 



 

• R2 can be inflated when sample X values are widely spaced 

 

 

Example (Toluca data): 

 

 

 

 

 

Correlation Models 

• In regression models: 

 

 

 

• If we simply have two continuous variables X and Y without 

natural response/predictor roles, a correlation model may be 

appropriate. 

• Convenience store example: 

 

 

 

• If appropriate, we could assume X and Y have a bivariate normal 

distribution. 

• Five parameters:   

• Investigation of the linear association between X and Y is done 

through inferences on XY. 

• r is a point estimate of XY. 

• Testing H0: XY = 0 is equivalent to 

 

• A CI for XY requires Fisher’s z-transformation: 

 

 

For large samples, a (1 – )100% CI for  



• Then use Table B.8 in book to back-transform endpoints to get CI 

for XY. 

 

Example: 

 

 

 

 

 

 

 

 

Cautions about Regression 

 

• When predicting future values, the conditions affecting Y and X 

should remain similar for the prediction to be trustworthy. 

 

• Beware of extrapolation (predicting Y for values of X outside the 

range of X in the data set).  The relationship observed between Y 

and X may not hold for such X values. 

 

• Concluding that Y and X are linearly related (that 1 ≠ 0) does not 

imply a causal relationship between X and Y. 

 

• Beware of making multiple predictions or inferences 

simultaneously – generally the Type I error rate is affected. 

 

• The least-squares estimates are not unbiased if X is measured with 

error. 

• This is when the X values we observe in our data are not the true 

predictor values for those observations. 

• In this case, the estimated coefficients are biased toward zero. 

• Advanced techniques are needed to deal with this issue. 


