Chapter 9: Model Building

• With confirmatory observational studies, the goal is to determine whether (or how) the response is related to one or more particular (pre-specified) explanatory variables.

• **Exploratory** observational studies are done when we have little previous knowledge of exactly which explanatory variables are related to the response.

• We may have a large list of **potentially** useful predictor variables for our model.

• Variable selection procedures can help us “screen out” unimportant predictors and build a useful model.

First steps: Often involve plots.

•

•

•

• Once a reasonable set of potential predictors is identified, formal model selection is begun.

• If the set of predictors is large (more than 20 or so), we may use stepwise procedures to reduce the number of variables under consideration.

 Forward Stepwise Regression

• A procedure for adding (or deleting) one variable **at a time** to a model.
• Suppose we have K potential predictors. Steps:

Note: We should choose α-to-enter to be somewhat smaller than α-to-remove. Book example:

• “Forward Selection,” “Backward Elimination,” and “Backward Stepwise Regression” are similar procedures – see page 368 for details about these.
• Once we reduce the set of potential predictors to a reasonable number, we can examine all possible models and choose the “best” model(s) based on some criterion.

Possible criteria:
(1) Choose the model with the largest adjusted R^2:

Note: This is equivalent to choosing the model with the smallest MSE.

• Note that if irrelevant variables are added to the model, p increases and so

• Thus R^2_a penalizes a model that is

(2) Choose the model with the smallest Akaike Information Criterion (AIC): With the normal-error model,

• The first two terms represent $-2 \ln L$ (where $L =$ maximized likelihood function) for the normal model.
• Like R^2_a, using AIC as a criterion favors models with small SSE, but penalizes models with too many variables (large p).
Choose model with the smallest Schwarz Bayesian Criterion (SBC), also known as the Bayesian Information Criterion (BIC).

BIC is similar to AIC, but for $n \geq 8$, the BIC “penalty term” is more severe.

Choose model using Mallows’ C_p:

Measures the bias in the regression model, relative to the “full” model having all the candidate predictors.

If the model is unbiased, meaning

then

Goals: (i) Choose candidate model for which C_p is relatively small. (ii) Choose candidate model for which $C_p \approx p$ (= the number of parameters in that candidate model.)

Criteria (1)-(4) may yield different “best” models. Our goal is to find a model that balances (i) A good fit to the data (ii) Low bias (iii) Parsimony (less complexity)

All else being equal, a simpler model is often easier to interpret and work with.
Model Validation

• It is often desired to check our chosen model’s predictive ability with “independent” data.
• This could be done through:

(1) Collecting new data (typically impractical)
(2) Data splitting (cross-validation)

• We measure the predictive ability with the mean-squared prediction error:

• MSPR should be “close” to MSE from the training-set model.

Note: Data splitting is most useful with large data sets.
Note: The training set should be at least as big as the validation set.
(3) \textit{n-fold Cross-Validation}

\begin{itemize}
 \item Can be used for smaller data sets.
 \item For each observation \(i = 1, \ldots, n \), we delete the \(i \)-th observation. Fit the model with the other \(n-1 \) observations, and use fitted model to predict the \(i \)-th response. Let \(\hat{Y}_{i(i)} \) be this predicted value.
 \item Do this for all \(n \) observations, and add the squared prediction errors: Prediction Sum of Squares (PRESS) is:
\end{itemize}

\begin{itemize}
 \item If PRESS is only slightly larger than model SSE, then our model has good predictive ability.
\end{itemize}

Example (Surgical Unit Final Model):

\textbf{Diagnostic Measures}

To check for the proper functional form for a predictor variable, we could use:

\textbf{Plots of residuals against each individual predictor:}

\begin{itemize}
 \item A clear curved pattern may suggest the predictor should enter the model in a curvilinear manner.
\end{itemize}
Added-variable (Partial Regression) Plots:
• For any predictor X_j:

What to Look For:
• Flat Pattern with near zero slope:

• Linear Pattern with nonzero slope:

• Curved Pattern with nonzero slope:

Example (Life insurance data):

Example (Bodyfat data):
Outliers and Influential Observations

• Outliers are individual observations that are in some way separated from the bulk of the data set.
• In regression, we may have:
 (1) Outliers in Y value
 (2) Outliers in X value(s)
 (3) Outliers in both Y and X value(s)

SLR example:

• Which point will have the most influence on the regression line?

• Outliers are often easily seen with a scatterplot in SLR.

• In multiple regression, we rely on complex diagnostics.
Detecting Outliers in Y: Studentized Residuals

• The residuals, are measured in the same units as the response.

• To obtain a unit-free residual, we divide by the standard error of e_i:

This is called the **internally studentized residual** for the i-th observation.

Rule of Thumb: An observation with $|r_i| > 2.5$ may be considered an outlier (in Y).

Note: An **externally studentized residual** involves the MSE calculated with the i-th observation deleted.

• Here, a formal t-test allows us to declare an observation an outlier if its externally studentized residual
Detecting Outliers in X

- The diagonal elements h_{ii} of the hat matrix (also called the leverage values) measure how far each observation is from the center of the X space.

Note:

- If a leverage value h_{ii} is large, this means the i-th observation may potentially have a large influence on the fitted regression equation (but it is not always the case).

Note:

Recall:

Rule of Thumb: The i-th observation is a high-leverage point if its
Detecting Influential Observations

- An observation is influential if its exclusion (or inclusion) from the analysis causes major changes in the fit of the regression function.

Picture:

- We focus on two main measures of influence.
- Both measure (for each $i = 1, \ldots, n$) the difference between the fitted line with observation i included and the fitted line with observation i deleted.

DFFITS:

Cook’s Distance:

Rules of Thumb: The i-th observation may be influential if
Note: DFBETAS is another measure that reveals the influence of an observation on the estimation of each regression coefficient.

Example 1 (Bodyfat data, 3 predictors):

Example 2 (Surgical unit data, 4 predictors):

- Handling outliers and influential points is quite subjective.
- Analyst should closely examine observation(s) in question before excluding them from the analysis.
- If they are truly representative of the relevant population, better to leave them in the data set.
- Advanced methods (e.g., ridge regression) can reduce influence of unusual observations without deleting them.

- A drawback of the single-deletion detection methods studied here: What if a pair of points is influential?
- These methods may not detect the points.

Picture: