
Nonparametric Approaches to Regression  

 

• In traditional nonparametric regression, we assume very little 

about the functional form of the mean response function. 

 

• In particular, we assume the model 

 

 

 

where m(xi) is unknown but is typically assumed to be a 

smooth, continuous function. 

 

• The i are independent r.v.’s from some continuous 

distribution, with mean zero and variance 2. 

 

Goal:  Estimate the mean response function m(x). 

 

Advantages of nonparametric regression:   

 

• Ideal for situations when we have no prior idea of the 

relationship between Y and X. 

• By not specifying a parametric form for m(x), we allow much 

more flexibility in our model. 

• Our model can more easily account for unusual behavior in 

the data: 

 

 

 

 

 

 

 

• Not as prone to bias in the mean response estimate resulting 

from choosing the wrong model form.  

 



Disadvantages of nonparametric regression:   

• Not as easy to interpret. 

• No easy way to describe the relationship between Y and X 

with a formula written on paper (this must be done with a 

graph). 

 

Note:  Nonparametric regression is sometimes called 

scatterplot smoothing. 

• Specific nonparametric regression techniques are often called 

smoothers. 

 

Kernel Regression Estimates 

 

• The idea behind kernel regression is to estimate m(x) at each 

value x* along the horizontal axis. 

 

• At each value x*, the estimate             is simply an  

 

 

 

• Consider a “window’ of points centered at x*:  

 

 

 

 

 

 

 

 

 

 

 

 

• The width of this window is called the ____________. 

 



• At each different x*, the window of points _________ 

to the left or right 

 

• Better idea:  Use  

 

 

 

• This can be done using a ______________ function known as 

a kernel. 

 

• Then, for any x*, 

 

 

 

where the weights 

 

K (∙) is a kernel function, which typically is a density function 

symmetric about 0. 

 

 = bandwidth, which controls the smoothness of the estimate 

of m(x). 

 

Possible choices of kernel: 

 

 

 

 

 

 

 

 

Pictures: 

 

 

 



Note:  The Nadaraya-Watson estimator 

 

 

 

is a modification that assures that the weights for the Yi’s will 

sum to one. 

 

• The choice of bandwidth  is of more practical importance 

than the choice of kernel.  

 

• The bandwidth controls how many data values are used to 

compute m(x*) at each x*. 

 

Large  → 

 

 

 

 

Small  → 

 

 

 

• Choosing  too large results in an estimate that 

______________ the true nature of the relationship between Y 

and X.  

 

• Choosing  too small results in an estimate that follows the 

“noise” in the data too closely.  

 

• Often the best choice of  is made through visual inspection 

(pick the roughest estimate that does not fluctuate 

implausibly?). 

 



• Automatic bandwidth selection methods such as cross-

validation are also available – this chooses the that minimizes 

a mean squared prediction error: 

 

 

 

 

 

Example on computer:  The R function ksmooth performs 

kernel regression (see web page for examples with various 

kernel functions and bandwidths). 

 

 

 

 

Spline Methods 

 

• A spline is a piecewise polynomial function joined smoothly 

and continuously at x-locations called knots. 

 

• A popular choice to approximate a mean function m(x) is a 

cubic regression spline. 

 

• This is a piecewise cubic function whose segments’ values and 

first derivatives are equal at the knot locations. 

• This results in a visually smooth-looking overall function. 

 

• The choice of the number of knots determines the smoothness 

of the resulting estimate: 

 

Few knots → 

 

Many knots → 

 

 



• We could place more knots in locations where we expect m(x) 

to be wiggly and fewer knots in locations where we expect m(x) 

to be quite smooth. 

 

• The estimation of the coefficients of the cubic functions is 

done through least squares. 

 

• See R examples on simulated data and Old Faithful data, 

which implement cubic B-splines, a computationally efficient 

approach to spline estimation. 

 

 

• A smoothing spline is a cubic spline with a knot at each 

observed xi location. 

• The coefficients of the cubic functions are chosen to minimize 

the penalized SSE: 

 

 

 

 is a smoothing parameter that determines the overall 

smoothness of the estimate. 

 

• As  → 0, a wiggly estimate is penalized _________ and the 

estimated curve 

 

• As  → ∞, a wiggly estimate is penalized _________________ 

and the estimated curve 

 

 

• See R examples on simulated data and Old Faithful data. 

 

 

• Inference within nonparametric regression is still being 

developed, but often it involves bootstrap-type methods.  

 



Regression Trees and Random Forests 

 

• Trees and random forests are other modern, computationally 

intensive methods for regression. 

 

• Regression trees are used when we have one response 

variable which we want to predict/explain using possibly 

several explanatory variables. 

 

• The goals of the regression tree approach are the same as the 

goals of multiple regression: 

(1) Determine which explanatory variables have a significant 

effect on the response. 

(2) Predict a value of the response variable corresponding to 

specified values of the explanatory variables. 

 

• The regression tree is a method that is more algorithm-based 

than model-based. 

 

• We form a regression tree by considering possible partitions 

of the data into r regions based on the value of one of the 

predictors: 

Example: 

 

 

 

 

• Calculate the mean of the responses in each region,  

 

• Compute the sum of squared errors (SSE) for this 

partitioning: 

 

 



• Of all possible ways to split the data (splitting on any 

predictor variables and using any splitting boundary), pick the 

partitioning that produces the smallest SSE. 

 

• Continue the algorithm by making subpartitions based on the 

most recent partitioning. 

• The result is a treelike structure subdividing the data. 

 

• This also works well when a predictor is categorical -- we can 

subdivide the data based on the categories of the predictor. 

 

• Splitting on one variable separately within partitions of 

another variable is essentially finding an interaction between 

the two variables. 

 

• The usual regression diagnostics can be used -- if problems 

appear, we can try transforming the response (not the 

predictors). 

 

• Eventually we will want to stop splitting and obtain our final 

tree. 

• Once we obtain our final tree, we can predict the response for 

any observation (either in our sample, or a new observation) 

by following the splits (based on the observation’s predictor 

values) until we reach a “terminal node” of the tree. 

 

• The predicted response value is the mean response of all the 

sampled observations corresponding to that terminal node. 

 

• A criterion to select the “best” tree is the cost-complexity: 

 

 

 

• The first piece measures fit and the second piece penalizes an 

overly complex tree. 



• Another approach to tree selection is cross-validation. 

 

• We select a random subset of the data, build a tree with that 

subset, and use the tree to predict the responses of the 

remaining data. 

 

• Then a cross-validation prediction error can be calculated:  A 

tree with low CV error (as measured by MSPR) is preferred. 

 

• The rpart function in the rpart package of R produces 

regression tree analyses. 

 

• More (or less) complex trees may be obtained by adjusting 

the cp argument in the prune.rpart function. 

 

• The cp value is directly proportional to , so a larger value of 

cp encourages a _____________ tree. 

 

• The plotcp function can guide tree selection by plotting CV 

error against cp:  We look for the elbow in the plot. 

 

Examples (Boston housing data, University admissions data):  

A plot of the graph of the tree reveals the important variables. 

 

 

 

 

 

 

 

 

 

• Classification Trees work similarly and are used when the 

response is categorical. 



Random Forests 

 

• The random forest approach is an ensemble method -- it 

generates many individual predictions and aggregates them to 

produce a better overall method. 

 

• As the name suggests, a random forest consists of many trees. 

 

• It relies on the principle of bagging (bootstrap aggregating) 

proposed by Leo Breiman. 

 

• Different trees are constructed using ntree bootstrap resamples 

of the data, and the nodes are split based on random subsets of 

predictors, each of size mtry. 

 

• In regression, prediction is done by averaging predicted 

response values across the predicted trees. 

 

• The error rate is typically assessed by predicting out-of-bag 

(OOB) data -- the data not chosen for the bootstrap sample -- 

using each constructed tree. 

 

• The randomForest function in the randomForest 

package in R will obtain a random forest, for either regression 

(continuous response) or classification (categorical response). 

 

• It also provides a measure of which explanatory variables are 

most important. 

 

• See examples on the course web page. 

 


