
Chapter 12:  Time Series Regression Models 

 

• When data are gathered over time, the assumption that the 

error terms are uncorrelated across observations may be 

incorrect.   

• In time series data, it is common for the errors to be 

positively correlated across time. 

 

• Correlation of r.v.’s over time is called autocorrelation or 

serial correlation. 

 

An Example:  

Response = annual sales of a product, for a period of 30 years 

Predictor = annual price of product, for the 30 years 

 

• If population size affects sales, and if population size is 

omitted from the model, then the resulting linear regression 

will likely have errors that are positively correlated over time. 

 

Problems Resulting from Autocorrelation 

 

• The estimated regression coefficients are still unbiased, but 

their variances will be excessively large. 

• MSE may severely underestimate the error variance 2. 

• The standard error of the bj’s (as usually calculated) may 

seriously underestimate the true standard deviation of the 

estimated coefficients. 

• The t-procedures and F-tests used for inference about the 

regression model will not be valid. 

 

Effect of Autocorrelated Error Terms 

 

Let  

 

 



• Suppose t consists of  

 

where the disturbance terms ut are distributed 

 

• So any error term is a combination of the _________________ 

and _________________________________. 

 

• This results in the t’s being _________________________ 

over time. 

 

• See Figure 12.2, pg. 483 based on some simulated data: 

 

 

 

 

Result: 

 

 

• The variability of the data around the fitted regression line is 

_________ than the variability of the data around the true 

regression line. 

 

• The effect of the first error term on the data (and the fit) is 

large (see Figure 12.2(c) for data having a different 0). 

 

First-order Autoregressive Error SLR Model 

 

• This model, which is common in time series analysis, assumes 

the errors follow an AR(1) process. 

 

 

 

where the autocorrelation parameter  is such that 

and 



• If  = 0, then this is  

 

• If we have multiple predictors X1, … Xk, then the model is 

 

 

 

 

Properties of Error Terms under the Autoregressive Model 

 

Note 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since all Ut have mean zero, 

 

 

 

 

 

 

 

 

 

Writing the t’s in terms of the Ut’s and using the 

independence of the Ut’s, we can show 



• For any s ≠ 0, the covariance between error terms s time 

periods apart is 

 

 

 

• This is called the  

 

• The correlation coefficient between error terms s time 

periods apart is 

 

 

 

• This is called the  

 

Durbin-Watson Test for Autocorrelation 

 

• This tests the null hypothesis  

in the first-order autoregressive model 

 

• The usual hypotheses are  

 

• The test statistic D is based on the residuals from an ordinary 

least squares fit: 

 

 

 

• A small value of D implies that t and t – 1 tend to be 

____________, and so a small D value leads us to conclude: 

 

• Table B.7 gives values dL and dU such that if D > dU we 

conclude H0, and if D < dL we conclude Ha. 

 

• SAS gives an exact P-value for the D-W test with the 

DWPROB option in PROC REG.  The R function dwtest in 

the lmtest package will also give an exact P-value. 



• To test H0:  = 0 vs. H0:  < 0, we use the same test with 

as the test statistic. 

 

• To test H0:  = 0 vs. H0:  ≠ 0 at level , we can do both of the 

one-sided tests and reject H0 if either p-value is less than /2. 

 

Example (Blaisdell sales data): 

Response = the company’s quarterly sales (seasonally adjusted) 

from 1998-2002. 

Predictor = the industry’s quarterly sales (seasonally adjusted) 

from 1998-2002. 

 

D-W test (from SAS or R): 

 

 

 

 

 

Remedies for Autocorrelation 

 

• The easiest and best remedy when errors are autocorrelated 

is to add predictor variables to the model. 

• Adding a key predictor that has time-ordered effects on the 

response can solve the problem. 

• Including indicator variables for seasonal effects can be 

helpful when the data exhibit seasonality.  

 

• If addition of predictor variables does not help, we can try 

transformations of the variables: 

 

Let 

 

 

 

 



Then under the SLR model with AR(1) errors: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• So using the transformations Yt
’ and Xt

’ above yields a SLR 

model with independent errors, which can be fit with OLS. 

 

Note:   is unknown, so we must estimate it by some statistic r. 

 

Then  

 

 

We regress Y’ against X’ to obtain 

 

and back-transform via 

 

to obtain 

 

 

 

• There are three common procedures to find r:  An iterative 

procedure called the Cochrane-Orcutt procedure, the 

Hildreth-Lu procedure, and the first-differences procedure. 

 



• The Cochrane-Orcutt procedure chooses the estimate of  to 

be: 

 

 

• After regressing Y’ against X’, we check with the D-W test 

whether autocorrelation of the errors still exists. 

• If so, we can iterate this process one or two times, using the 

most recent residuals in the calculation of r. 

 

• The Hildreth-Lu procedure uses a computer search to find 

the estimate of  that minimizes: 

 

 

 

• The first differences procedure essentially just sets  = 1. 

 

• PROC AUTOREG in SAS uses the Yule-Walker procedure, 

which is like the Cochrane-Orcutt method, except that it 

retains information in the first observation. 

 

Example (Blaisdell data): 

 

 

 

 

 

 

 

 

 

 

 

 

 



Forecasting with Time Series Models 

 

• Forecasting refers to predicting a response value for some 

time in the future (after the most recent time period from the 

sample). 

 

• For example, if our sample responses are (Y1, Y2, …, Yn), then 

we may want to forecast the value of Yn+1 (using the predictor 

value(s) at time period n+1. 

 

• Note that if the errors are autocorrelated, then information 

about the error at time n, n, will be informative about the next 

error, n+1. 

 

• Based on our AR(1) model for SLR: 

 

 

 

 

 

• We estimate 0 + 1Xn+1 by 

 

 

 

 

 

 

• We estimate n by 

 

 

 

 

• We estimate un+1 by  

 



• So our forecast is  

 

• We can get an approximate 100(1 – )% prediction interval 

for  

 

 

 

 

where s2{pred} is the estimated prediction variance calculated 

based on the transformed variables: 

 

 

 

 

 

• The error d.f. are (n – 3) since only (n – 1) transformed 

observations are used in the Cochrane-Orcutt procedure. 

 

Example (Blaisdell data):  Our sample data are for time 

periods 1, 2, …, 20. 

• It is projected that the industry sales for period 21 will be  

X21 =  

 

• The forecast 

 

 

 

 

 

 

 

 

 

• Forecasts for two or more time periods ahead can also be 

developed; for example: 



Regression with Missing Data 

 

• When some observations have missing values for some 

variables, we cannot use our usual regression or ANOVA 

formulas. 

 

Types of “Missingness” 

 

• Suppose U is a variable that may be missing and the vector W 

represents a set of variables whose values are completely 

observed. 

 

• Let R be a “missingness” indicator such that 

 

 

 

• Then the data are missing completely at random (MCAR) if 

 

 

 

• MCAR implies that the probability of an observation being 

missing on U is unrelated to the values of ANY of the variables. 

  

• The data are missing at random (MAR) if 

 

 

 

• MAR implies that the probability of an observation being 

missing on U is unrelated to its true value of U, but this 

missingness probability could be related to the values of the 

other variables. 

 

• MAR is a ____________ assumption than MCAR, since if the  

 

data are ___________, then they must be ______________. 



 

• There are several options for handling missing data in the 

linear model framework: 

 

Listwise deletion:  This method simply removes any 

observations that have missing values for any variable. 

 

• Then the model is fit using only the observations that have no 

missing values for any variable. 

 

Disadvantages:  (1) If the number of missing values is not 

small, then this can result in a greatly reduced sample size and 

a lot of sample information gets “thrown away”. 

(2) The resulting regression estimates will be biased, unless the 

missing data are truly MCAR (which is a strong assumption). 

 

Multiple Imputation (MI):  This approach “fills in” (imputes) 

missing data several different times, creating several “imputed 

data sets”. 

 

• Then the model is fit to all the imputed data sets separately. 

 

• The results (parameter estimates, standard errors, test 

statistics, etc.) from each fit are combined into a single set of 

results. 

 

• The MI estimates have nice (large-sample) properties: 

 

 

 

 

 

 

 

 



Creating the Imputed Data 

  

• A common method of imputation is the linear regression 

method. 

 

• Suppose U has missing values but W1 and W2 are completely 

observed for all observations. 

• We fit a linear regression of U on W1 and W2 based on the 

observations having no missing data. 

• Using the resulting regression equation, we predict the values 

of U that are missing, based on the observed W1 and W2 for 

those observations. 

 

• To increase the variance of the imputed data, to account for 

the fact that it was predicted and not truly observed, we 

actually use as the imputed value of U: 

 

 

where  is a randomly generated standard normal r.v. 

 

• This is done for each observation having a missing U value. 

 

• We do this several times, each with different random draws 

of  from the standard normal distribution, thus creating 

“multiple” imputed data sets. 

 

• Formulas have been derived to estimate the standard error 

correctly under multiple imputation. 

 

• Around M = 5 imputed data sets are considered enough to 

estimate parameters accurately, although more may be needed 

if the amount of missing data is large. 

 

 



• One attractive implementation of MI is called “multiple 

imputation by chained equations” (MICE), which is capable of 

imputing both quantitative and categorical data.   

 

• This can be implemented by PROC MI in SAS and by the 

mice package in R. 

 

Maximum Likelihood:  This works by:  

(1) assuming a model for the data 

(2) factoring the likelihood into a part involving the 

observations with complete data and a part involving the 

observations with missing data 

(3) estimating the parameters by maximizing the likelihood  

 

• A disadvantage of MI is that, since it relies on randomly 

generated data, you will get a different result each time you 

run it on the same data. 

• Also, there are a lot of modeling choices to make with MI 

(although in practice people tend to use the software default 

choices). 

• For example, you must choose both an “imputation model” 

and an “analysis model”, and problems can arise when the 

analysis model is more complicated than the imputation model. 

 

• With the maximum likelihood (ML) method for missing data, 

you assume one model and will get one result. 

 

• ML shares the same good large-sample properties as MI and 

is actually even more efficient. 

 

• But MI is somewhat more flexible (you can do any analysis 

you want on the imputed data sets, using familiar procedures 

and functions). 

 



• With SAS, you can use ML on most linear models, and a few 

nonlinear models, but not all common models. 

 

Example 1:  (Regression Models with Missing Data on the 

Response Variable) 

• If some observations are missing response values, but there is 

complete data for all the predictor variables, listwise deletion is 

recommended (ML will be equivalent to listwise deletion in this 

situation). 

• If some observations are missing response values, and other 

observations are missing values of the predictor variables, it is 

recommended to use MI to impute the missing predictor 

values, but still delete the observations with missing responses. 

 

Example 2: (Repeated Measures Models with Dropouts) 

• This is a common situation in longitudinal studies when some 

subjects may drop out of the study before all the measurements 

across time have been taken. 

 

Example:  (Dental data with some children dropping out 

before the end of the study) 

 

 

 

 

 

 

 

 

 

 

 

 

 



• For GLMs (with non-normal responses) having missing data, 

PROC GLIMMIX can implement the ML approach. 

 

Example 3: (Regression Models with Missing Values on 

Predictor Variables) 

Example: (1990 National Longitudinal Survey of Youth; data 

on 581 children) 

Response: ANTI (antisocial behavior, measured with a scale 

ranging from 0 to 6)  

Predictors: SELF=self-esteem (measured on scale from 6 to 24) 

POV=poverty status of family (1= in poverty, otherwise 0)  

BLACK (1 if child is black, otherwise 0)  

HISPANIC (1 if child is Hispanic, otherwise 0)  

CHILDAGE (child’s age in 1990)  

DIVORCE (1 if mother was divorced in 1990, otherwise 0)  

GENDER (1 if female, 0 if male) 

MOMAGE (mother’s age at birth of child)  

MOMWORK (1 if mother was employed in 1990, otherwise 0) 

 

• No missing response values here, but lots of missing predictor 

values. 

• Compare results using listwise deletion to results using 

multiple imputation: 

 

 

 


