Other Noninformative Priors

- Other methods for noninformative priors include
 - Bernardo's reference prior, which seeks a prior that will maximize the discrepancy between the prior and the posterior and minimize the discrepancy between the likelihood and the posterior (a "dominant likelihood prior").
 - ▶ An improper prior, in which $\int_{\Theta} p(\theta) = \infty$.
 - A highly **diffuse** proper prior, e.g., for normal data with μ unknown, a N(0,1000000) prior for μ . (This is very close to the improper prior $p(\mu) \propto 1$.)

Informative Prior Forms

Informative prior information is usually based on expert opinion or previous research about the parameter(s) of interest.

Power Priors

- ► Suppose we have access to **previous data x**₀ that is analogous to the data we will gather.
- ▶ Then our "power prior" could be

$$p(\theta|\mathbf{x}_0, a_0) \propto p(\theta)[L(\theta|\mathbf{x}_0)]^{a_0}$$

where $p(\theta)$ is an ordinary prior and $a_0 \in [0,1]$ is an exponent measuring the influence of the previous data.

Power Priors

- ▶ As $a_0 \rightarrow 0$, the influence of the previous data is lessened.
- ▶ As $a_0 \rightarrow 1$, the influence of the previous data is strengthened.
- ▶ The posterior, given **our actual** data **x**, is then

$$\pi(\theta|\mathbf{x},\mathbf{x}_0,a_0)\propto p(\theta|\mathbf{x}_0,a_0)L(\theta|\mathbf{x})$$

▶ To avoid specifying a single a_0 value: We could put a, say, beta distribution $p(a_0)$ on a_0 and average over values of a_0 in [0,1]:

$$p(\theta|\mathbf{x}_0) = \int_0^1 p(\theta) [L(\theta|\mathbf{x}_0)]^{a_0} p(a_0) \, \mathrm{d}a_0$$

Prior Elicitation

A challenge is putting "expert opinion" into a form where it can be used as a prior distribution.

Strategies:

- ▶ Requesting guesses for several quantiles (maybe {0.1, 0.25, 0.5, 0.75, 0.9}?) from a few experts.
- ▶ For a normal prior, note that a quantile $q(\alpha)$ is related to the z-value $\Phi^{-1}(\alpha)$ by:

$$q(\alpha) = \text{mean} + \Phi^{-1}(\alpha) \times (\text{std. dev.})$$

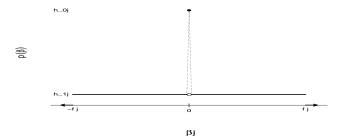
▶ Via regression on the provided $[q(\alpha), \Phi^{-1}(\alpha)]$ values, we can get estimates for the mean and standard deviation of the normal prior.

Prior Elicitation

- ► Another strategy asks the expert to provide a "predictive modal value" (most "likely" value) for the parameter.
- ▶ Then a rough 67% interval is requested from the expert.
- With a normal prior, the length of this interval is twice the prior standard deviation.
- For a prior on a Bernoulli probability, the "most likely" probability of success is often "clear".

Spike-and-Slab Priors for Linear Models

- In regression, the priors on the regression coefficients are crucial.
- ▶ Whether or not $\beta_j = 0$ defines whether X_j is "important" in the regression.
- ▶ For any j, a useful prior for β_j is:



Spike-and-Slab Priors for Linear Models

- ▶ Here: $P(\beta_j = 0) = h_{0j}$ (= prior probability that X_j is **not** needed in the model)
- ▶ $P(\beta_j \neq 0) = 1 h_{0j} = h_{1j}(f_j (-f_j)) = 2f_j h_{1j}$ (where $[-f_j, f_j]$ contains all "reasonable" values for β_j)
- ▶ To include X_i in the model with certainty, set $h_{0i} = 0$.
- ➤ To reflect more doubt that X_j should be in the model, increase the ratio

$$\frac{h_{0j}}{h_{1j}} = \frac{h_{0j}}{(1 - h_{0j})/2f_j} = 2f_j \frac{h_{0j}}{1 - h_{0j}}$$

Recently, "nonparametric priors" have become popular, typically involving a mixture of Dirichet processes.

CHAPTER 6 SLIDES START HERE

- ► The Monte Carlo method involves studying a distribution (e.g., a posterior) and its characteristics by generating many random observations having that distribution.
- ▶ If $\theta^{(1)}, \dots, \theta^{(S)} \stackrel{\text{iid}}{\sim} \pi(\theta|\mathbf{x})$, then the empirical distribution of $\{\theta^{(1)}, \dots, \theta^{(S)}\}$ approximates the posterior, when S is large.
- By the law of large numbers,

$$\frac{1}{S}\sum_{s=1}^{S}g(\theta^{(s)})\to E[g(\theta)|\mathbf{x}]$$

as $S \to \infty$.

So as $S \to \infty$:

$$\begin{split} \bar{\theta} &= \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)} \rightarrow \text{ posterior mean} \\ &\frac{1}{S-1} \sum_{s=1}^{S} (\theta^{(s)} - \bar{\theta})^2 \rightarrow \text{ posterior variance} \\ &\frac{\#\{\theta^{(s)} \leq c\}}{S} \rightarrow P[\theta \leq c | \mathbf{x}] \\ \text{median}\{\theta^{(1)}, \dots, \theta^{(S)}\} \rightarrow \text{ posterior median} \end{split}$$

(and similarly for any posterior quantile).

▶ If the posterior is a "common" distribution, as in many conjugate analyses, we could draw samples from the posterior using R functions.

Example 1: (General Social Survey)

- ► Sample 1: # of children for women age 40+, no bachelor's degree.
- ➤ **Sample 2**: # of children for women age 40+, bachelor's degree or higher.
- ▶ Assume Poisson(θ_1) and Poisson(θ_2) models for the data.
- We use gamma(2,1) priors for θ_1 and for θ_2 .

- ▶ **Data**: $n_1 = 111$, $\sum_i x_{i1} = 217$
- ▶ **Data**: $n_2 = 44$, $\sum_i x_{i2} = 66$
- ightharpoonup \Rightarrow Posterior for θ_1 is gamma(219,112).
- ▶ \Rightarrow Posterior for θ_2 is gamma(68, 45).
- Find $P[\theta_1 > \theta_2 | \mathbf{x}_1, \mathbf{x}_2]$.
- ▶ Find posterior distribution of the ratio $\frac{\theta_1}{\theta_2}$.
- See R example using Monte Carlo method on course web page.