In many cases the posterior distribution does not have a simple **recognizable** form, and so we cannot sample from it using built-in R functions like “rgamma”.

In this case, **Markov chain Monte Carlo** (MCMC) sampling methods are used.

A **Markov chain** is an ordered, indexed set of random variables (a stochastic process) in which the value of each quantity depends probabilistically **only** on the previous quantity.
Specifically, if \(\{\theta[0], \theta[1], \theta[2], \ldots\} \) is a Markov chain, then it has the **Markovian** property:

For any set \(A \),

\[
P\{\theta[t] \in A | \theta[0], \theta[1], \ldots, \theta[t-1]\} = P\{\theta[t] \in A | \theta[t-1]\}
\]

So \(\theta[t] \) is **conditionally independent** of all earlier values except the previous one.

So the values in a Markov chain are not independent, but are “almost independent.”
The **Gibbs Sampler** is a MCMC algorithm that approximates the **joint distribution** of \(k \) random quantities by sampling from each **full conditional** distribution in turn.

Example: We are interested in the distribution of \(\theta = (\theta_1, \theta_2, \ldots, \theta_k) \). The Gibbs algorithm is:

1. Choose initial values \(\theta^{[0]} = (\theta_1^{[0]}, \theta_2^{[0]}, \ldots, \theta_k^{[0]}) \).
2. Cycle through each **full** conditional distribution, sampling, for \(t = 1, 2, \ldots \)
 \[
 \begin{align*}
 \theta_1^{[t]} &\sim \pi(\theta_1|\theta_2^{[t-1]}, \ldots, \theta_k^{[t-1]}) \\
 \theta_2^{[t]} &\sim \pi(\theta_2|\theta_1^{[t]}, \theta_3^{[t-1]}, \ldots, \theta_k^{[t-1]}) \\
 &\vdots \\
 \theta_k^{[t]} &\sim \pi(\theta_k|\theta_1^{[t]}, \theta_2^{[t]}, \ldots, \theta_{k-1}^{[t]})
 \end{align*}
 \]
3. Repeat steps in (2) until convergence.
We must be able to sample from each of the full conditional distributions to use the Gibbs Sampler.

Note that in each step, the **most recent** value of each θ_j is conditioned on.

After many cycles, the sampled values of $(\theta_1, \ldots, \theta_k)$ will approximate random draws from the joint distribution of $(\theta_1, \ldots, \theta_k)$.

Then we can summarize, say, a posterior distribution of interest as before.
Example 2: Testing the effectiveness of a seasonal flu shot.

20 individuals are given a flu shot at the start of winter.

At the end of winter, follow up to see whether they contracted flu.

Let

\[X_i = \begin{cases}
1 & \text{if shot effective (no flu)} \\
0 & \text{if ineffective (contracted flu)}
\end{cases} \]

Suppose the 20th individual was unavailable for followup.

Define \[Y = \sum_{i=1}^{19} X_i. \]
A Simple Gibbs Example

- If θ is the probability the shot is effective, then
 \[
p(y|\theta) = \binom{19}{y} \theta^y (1 - \theta)^{19-y}
 \]

- If we had the complete data (for Y and X_{20}), then
 \[
p(\theta|y, x_{20}) = \binom{20}{y + x_{20}} \theta^{y+x_{20}} (1 - \theta)^{20-y-x_{20}}
 \]

- If we put in “temporary” values θ^* and x_{20}^* for the unknown quantities, then
 \[
 \theta|X_{20}^*, Y \sim \text{beta}(Y + X_{20}^* + 1, 20 - Y - X_{20}^* + 1)
 \]
 and
 \[
 X_{20}|Y, \theta^* \sim \text{Bernoulli}(\theta^*)
 \]
We can repeatedly sample from these “full conditional” distributions and eventually get a sample from the joint distribution of \((\theta, X_{20})\).

See R example with data.
Example 3: (Coal Mining Disasters)

Gill gives yearly counts of British coal mine disasters, 1851-1962.

Relatively large counts in the early era, small counts in the later years.

Question: When did the mean of the process change?

We model the data using two Poisson distributions:

- “Early” data: $X_1, \ldots, X_k | \lambda \sim \text{Pois}(\lambda), \ i = 1, \ldots, k$
- “Later” data: $X_{k+1}, \ldots, X_n | \phi \sim \text{Pois}(\phi), \ i = k + 1, \ldots, n$

We must estimate each Poisson mean, λ and ϕ, and also the “changepoint” k.
Consider the priors:

\[\lambda \sim \text{gamma}(\alpha, \beta) \]
\[\phi \sim \text{gamma}(\gamma, \delta) \]
\[k \sim \text{discrete uniform on} \{1, 2, \ldots, n\} \]

If we believe the mean annual disaster count for early years is \(\approx 4 \) and for later years is \(\approx 0.5 \), let \(\alpha = 4, \beta = 1, \gamma = 1, \delta = 2 \) be the hyperparameters.
A More Complicated Gibbs Example (Changepoint)

Then the posterior is $\pi(\lambda, \phi, k|x)$

$$\propto L(\lambda, \phi, k|x)p(\lambda)p(\phi)p(k)$$

$$= \left[\prod_{i=1}^{k} \frac{e^{-\lambda \lambda^x_i}}{x_i!} \right] \left[\prod_{i=k+1}^{n} \frac{e^{-\phi \phi^x_i}}{x_i!} \right] \left[\frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} \right] \left[\frac{\delta^\gamma}{\Gamma(\gamma)} \phi^{\gamma-1} e^{-\delta \phi} \right] \left[\frac{1}{n} \right]$$

$$\propto e^{-k\lambda} \sum_{i=1}^{k} x_i e^{-(n-k)\phi} \sum_{i=k+1}^{n} x_i \lambda^{\alpha-1} e^{-\beta \lambda} \phi^{\gamma-1} e^{-\delta \phi}$$

$$= \lambda^{\alpha + \sum_{i=1}^{k} x_i - 1} e^{-(\beta + k)\lambda} \phi^{\gamma + \sum_{i=k+1}^{n} x_i - 1} e^{-(\delta + n - k)\phi}$$

So full conditionals are:

$$\lambda|\phi, k \sim \text{gamma}(\alpha + \sum_{i=1}^{k} x_i, \beta + k)$$

$$\phi|\lambda, k \sim \text{gamma}(\gamma + \sum_{i=k+1}^{n} x_i, \delta + n - k)$$
A More Complicated Gibbs Example (Changepoint)

To get the full conditional for k, note the joint density of the data is:

$$p(x|k, \lambda, \phi) = \prod_{i=1}^{k} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} \prod_{i=k+1}^{n} \frac{e^{-\phi} \phi^{x_i}}{x_i!}$$

$$= \prod_{i=1}^{n} \frac{1}{x_i!} e^{k(\phi-\lambda)} e^{-n\phi} \sum_{i=1}^{k} x_i \prod_{i=k+1}^{n} \phi^{x_i} \left[\frac{\prod_{i=1}^{k} \phi^{x_i}}{\phi \sum_{i=1}^{k} x_i} \right]$$

$$= \prod_{i=1}^{n} \frac{e^{-\phi} \phi^{x_i}}{x_i!} \left[e^{k(\phi-\lambda)} \left(\frac{\lambda}{\phi} \right)^{\sum_{i=1}^{k} x_i} \right]$$

$$= f(x, \phi)g(x|k)$$
By Bayes’ Law, for any particular value k^* of k,

$$p(k^* | x) = \frac{f(x, \phi) g(x | k^*) p(k^*)}{\sum_{k=1}^{n} f(x, \phi) g(x | k) p(k)}$$

Since $p(k) = 1/n$ (constant), we have

$$p(k^* | x) = p(k^* | x, \lambda, \phi) \propto \frac{g(x | k^*)}{\sum_{k=1}^{n} g(x | k)}$$

(full conditional for k)

- This ratio defines a probability vector for k that we use at each iteration to sample a value of k from $\{1, 2, \ldots, n\}$.
- see R example (Coal mining data)