Bayesian Estimation and Shrinkage

▶ The posterior mean of μ_j (given ϕ, τ^2, σ^2 and \mathbf{y}_j) is

$$E[\mu_{j}|\mathbf{y}_{j},\phi,\tau^{2},\sigma^{2}] = \frac{\frac{n_{j}y_{j}}{\sigma^{2}} + \frac{\phi}{\tau^{2}}}{\frac{n_{j}}{\sigma^{2}} + \frac{1}{\tau^{2}}}$$

$$= \left(\frac{n_{j}/\sigma^{2}}{n_{j}/\sigma^{2} + 1/\tau^{2}}\right)\bar{y}_{j} + \left(\frac{1/\tau^{2}}{n_{j}/\sigma^{2} + 1/\tau^{2}}\right)\phi$$

- So the posterior mean of μ_j is pulled **away from** \bar{y}_j and **toward** ϕ , the **mean** of the distribution of **all** the μ_j 's.
- This is called shrinkage.
- ▶ How much is each μ_j shrunk? It depends on n_j .
- ▶ For schools with a large sample size (large n_j), shrinkage is minimal.
- ▶ For schools with a few students (small n_j), shrinkage is substantial.

Bayesian Estimation and Shrinkage

Example 1: (Schools 82 vs. 46)

Data:
$$\bar{y}_{82} = 38.76$$
, $n_{82} = 5$, $\hat{\mu}_{82} = 42.53$
 $\bar{y}_{46} = 40.18$, $n_{46} = 21$, $\hat{\mu}_{46} = 41.31$

- ▶ Note $\hat{\phi} = 48.12$.
- ▶ For school 82, we have substantial shrinkage toward $\hat{\phi}$.
- ▶ For school 46, we have less shrinkage toward $\hat{\phi}$.
- ▶ We might then rank school 82 ahead of school 46, because we doubt that \bar{y}_{82} is a good estimate of school 82's true mean, being based on only 5 students.

Bayesian Estimation and Shrinkage

Example 2: (Schools 67 and 51)

Data:
$$\bar{y}_{67} = 65.02$$
, $n_{67} = 4$, $\hat{\mu}_{67} = 57.14$
 $\bar{y}_{51} = 64.37$, $n_{51} = 19$, $\hat{\mu}_{51} = 61.84$

- School 67 is shrunk down more toward $\hat{\phi}$.
- ▶ We expect school 51 to have a higher true mean even though its sample mean was lower.
- ▶ Intuition: Whom would you trust more to make a free throw, someone who has made 4 out of 4, or someone who has made 96 out of 100?

Empirical Bayes Estimation

- In this approach, we again do not specify particular values for the prior parameters in ψ .
- ▶ Instead of placing a (hyperprior) distribution on ψ as in hierarchical Bayes, the empirical Bayes approach is to estimate ψ from the data.
- ► This is not "purely" Bayesian, since in a sense we are using the data to determine the prior specification.
- Furthermore, the estimation of ψ must be done with non-Bayesian techniques (like maximum likelihood or method of moments).

Empirical Bayes Estimation

▶ If the prior on θ depends on hyperparameter(s) ψ , then the posterior is:

$$\pi(\theta|\mathbf{X}, \psi) = \frac{p(\theta|\psi)L(\theta|\mathbf{X})}{\int\limits_{\Theta} p(\theta|\psi)L(\theta|\mathbf{X}) d\theta}$$
$$= \frac{p(\theta|\psi)L(\theta|\mathbf{X})}{q(\mathbf{X}|\psi)}$$

Now we use as the hyperparameter(s) some estimate of ψ , such as the MLE of ψ based on $q(\mathbf{X}|\psi)$.

Examples: Empirical Bayes Estimation

▶ **Example 1**: Let $X_i \stackrel{\text{iid}}{\sim} \mathsf{Pois}(\lambda_i), i = 1, \dots, n$, and let $\lambda_i \stackrel{\text{iid}}{\sim} \mathsf{Gamma}(\alpha, \beta)$ with α known, β unknown.

Then
$$q(X_i|\beta) = \int_0^\infty \left[\frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda_i^{\alpha-1} e^{-\beta \lambda_i} \right] \left[\frac{e^{-\lambda_i} \lambda_i^{x_i}}{x_i!} \right] d\lambda_i$$

$$= \frac{\beta^{\alpha}}{x_i! \Gamma(\alpha)} \int_0^\infty \lambda_i^{x_i + \alpha - 1} e^{-(\beta + 1)\lambda_i} d\lambda_i$$

$$= \frac{\beta^{\alpha} \Gamma(x_i + \alpha)}{x_i! \Gamma(\alpha)(\beta + 1)^{x_i + \alpha}}$$

$$= \binom{x_i + \alpha - 1}{\alpha - 1} \left(\frac{\beta}{\beta + 1} \right)^{\alpha} \left(\frac{1}{\beta + 1} \right)^{x_i}$$

which is negative binomial.

Examples: Empirical Bayes Estimation

$$\Rightarrow q(\mathbf{X}|\beta) = \left[\prod_{i=1}^{n} {x_i + \alpha - 1 \choose \alpha - 1}\right] \left(\frac{\beta}{\beta + 1}\right)^{n\alpha} \left(\frac{1}{\beta + 1}\right)^{\sum x_i}$$

and it can be shown that the MLE of β is $\hat{\beta} = \frac{\alpha}{\bar{\mathbf{x}}}$.

▶ Using the prior λ_i ~ Gamma $(\alpha, \hat{\beta})$, the posterior for λ_i is thus

$$\lambda_i | x_i, \hat{\beta} \sim \mathsf{Gamma}(x_i + \alpha, 1 + \hat{\beta})$$

▶ Hence the Empirical Bayes estimator for λ_i (i = 1, ..., n) is the posterior mean

$$\frac{X_i + \alpha}{1 + \alpha/\bar{X}} = \left(\frac{\bar{X}}{\bar{X} + \alpha}\right)(X_i + \alpha).$$