Bayesian Estimation and Shrinkage

» The posterior mean of 1 (given ¢,72,02 and y;) is
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» So the posterior mean of y; is pulled away from y; and
toward ¢, the mean of the distribution of all the y;’s

» This is called shrinkage.
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» How much is each p; shrunk? It depends on n;.

> For schools with a large sample size (large n;), shrinkage is
minimal.

» For schools with a few students (small n;), shrinkage is
substantial.



Bayesian Estimation and Shrinkage

» Example 1: (Schools 82 vs. 46)

Data: ygo = 38.76, ngp =5, [igop = 42.53
ag = 40.18, nag = 21, fiag = 41.31

» Note ¢ = 48.12.
» For school 82, we have substantial shrinkage toward b.
» For school 46, we have less shrinkage toward ¢.

» We might then rank school 82 ahead of school 46, because we
doubt that yg is a good estimate of school 82's true mean,
being based on only 5 students.



Bayesian Estimation and Shrinkage

» Example 2: (Schools 67 and 51)

Data: ys7 = 65.02, ng7 =4, [267 =57.14
¥51 = 64.37, ns1 =19, [is; = 61.84

» School 67 is shrunk down more toward qg

» We expect school 51 to have a higher true mean even though
its sample mean was lower.

» Intuition: Whom would you trust more to make a free throw,
someone who has made 4 out of 4, or someone who has made
96 out of 1007



Empirical Bayes Estimation

» In this approach, we again do not specify particular values for
the prior parameters in .

» Instead of placing a (hyperprior) distribution on ) as in
hierarchical Bayes, the empirical Bayes approach is to
estimate 1 from the data.

» This is not “purely” Bayesian, since in a sense we are using
the data to determine the prior specification.

» Furthermore, the estimation of ) must be done with
non-Bayesian techniques (like maximum likelihood or method
of moments).



Empirical Bayes Estimation

» If the prior on @ depends on hyperparameter(s) 1), then the
posterior is:
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» Now we use as the hyperparameter(s) some estimate of 1,
such as the MLE of v based on g(X|)).



Examples: Empirical Bayes Estimation

» Example 1: Let X; i Pois(A;), i =1,...,n, and let

A Gamma(a, 3) with a known, (3 unknown.
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which is negative binomial.




Examples: Empirical Bayes Estimation
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and it can be shown that the MLE of 3 is ﬁA = g.
X

» Using the prior \; ~ Gamma(a,ﬁ), the posterior for A; is thus

Ailxi, B ~ Gamma(x; + a, 1 + ()

» Hence the Empirical Bayes estimator for A\; (i =1,...,n) is
the posterior mean
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