EXTRA CHAPTER SLIDES START HERE

Ordinal and Binary Probit Regression

- ▶ In Chapter 6(a), we studied a Poisson regression model, a type of model for count data.
- We now examine the probit regression model, which we apply to:
- 1. Binary (2-category) responses, and
- 2. Multi-category ordinal responses

- ▶ **Example 1**: Consider the response variable $Y \in \{1, 2, 3, 4, 5\}$ that indicates the highest educational degree an individual has obtained.
- ► The categories for *Y* correspond to: No degree; High school; Asoociate's; Bachelor's; Graduate degree.
- ▶ In a regression model, we consider the explanatory variables:

 $X_1 =$ number of children the individual has

$$X_2 = \begin{cases} 1 & \text{if either parent of individual has obtained college degree} \\ 0 & \text{otherwise} \end{cases}$$

 $X_3 = X_1 X_2$ (interaction variable)

- Using a normal regression model for Y is inappropriate because:
 - 1. the normal error assumption will be severely violated
 - 2. the labels $\{1,2,3,4,5\}$ imply an "equal spacing" between types of degree that may not exist in reality.
- ▶ We assume in **probit regression** that the underlying, say, educational achievement of a person is some unobserved continuous variable *Z*.
- What we observe is the ordinal, categorized version, denoted Y.

Our model is thus:

$$Y_i = g(Z_i), \quad i = 1, \dots, n$$

$$Z_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i$$

$$\epsilon_1, \dots, \epsilon_n \stackrel{\text{iid}}{\sim} N(0, 1)$$

- ▶ The unknown parameters are: $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$ and the nondecreasing function $g(\cdot)$, which relates the **latent** variable Z to the **observed** variable Y.
- Note $g(\cdot)$ can capture the location **and** scale of the distribution of the Y_i 's, so we may let $var(\epsilon_i) = 1$ and let the intercept $\beta_0 = 0$.

Since Y takes on K=5 ordered values, define K-1 "thresholds" g_1,g_2,g_3,g_4 that cut the range of Z into 5 categories:

$$y = g(z) = \begin{cases} 1 & \text{if } -\infty < z < g_1 \\ 2 & \text{if } g_1 \le z < g_2 \\ 3 & \text{if } g_2 \le z < g_3 \\ 4 & \text{if } g_3 \le z < g_4 \\ 5 & \text{if } g_4 \le z < \infty \end{cases}$$

▶ We will use the Gibbs sampler to approximate the joint posterior of $\{\beta, g_1, g_2, g_3, g_4, \mathbf{Z}\}$.

Full Conditional of β

▶ The full conditional of β depends only on **Z**:

$$\pi(\boldsymbol{\beta}|\mathbf{y},\mathbf{z},\mathbf{g}) = \pi(\boldsymbol{\beta}|\mathbf{z})$$

If we choose a multivariate normal prior

$$\boldsymbol{\beta} \sim MVN(\mathbf{0}, n(\mathbf{X}'\mathbf{X})^{-1})$$

then the full conditional is:

$$eta | \mathbf{z} \sim \mathit{MVN}\Big[rac{n}{n+1}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{z}, rac{n}{n+1}(\mathbf{X}'\mathbf{X})^{-1}\Big].$$

Full Conditional of **Z**

- We know $Z_i|\beta \sim N(\beta' \mathbf{x}_i, 1)$.
- ▶ Given **g** and $Y_i = y_i$, then $Z_i \in [g_{y_i-1}, g_{y_i})$. Hence

$$\pi(z_i|oldsymbol{eta},\mathbf{y},\mathbf{g}) \propto \mathcal{N}(oldsymbol{eta}'\mathbf{x}_i,1) imes \mathit{I}_{[\mathbf{a} \leq z_i < b]}$$

(a constrained normal distribution), where $a = g_{y_i-1}, b = g_{y_i}$.

▶ This can be sampled from fairly easily in R.

Full Conditional of g

- ▶ Given **y** and **z**, we know g_k must be between $a_k = \max\{z_i : y_i = k\}$ and $b_k = \min\{z_i : y_i = k+1\}$.
- ▶ We can choose constrained normal priors on the g_k 's so that the full conditional of g_k is $N(\mu_k, \sigma_k^2)$ constrained to the interval $[a_k, b_k)$.

- ► Example 1: Educational achievement data on 959 working males.
- Let's use the priors: $\beta \sim MVN(\mathbf{0}, n(\mathbf{X}'\mathbf{X})^{-1})$ and $p(\mathbf{g}) \propto \prod_{k=1}^{4} \text{dnorm}(g_k, 0, 100)$ constrained so that $g_1 < g_2 < g_3 < g_4$.
- ▶ R example on course web page: Posterior inference is made on $\beta_1, \beta_2, \beta_3$
- See plot of generated z₁,..., z₉₅₉ against the number of children for individuals 1,..., 959.
- ▶ Different slopes for $X_2 = 0$ and $X_2 = 1$.