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Ordinal and Binary Probit Regression

» In Chapter 6(a), we studied a Poisson regression model, a
type of model for count data.

» We now examine the probit regression model, which we
apply to:

1. Binary (2-category) responses, and
2. Multi-category ordinal responses



Example: Ordinal Probit Regression

» Example 1: Consider the response variable Y € {1,2,3,4,5}
that indicates the highest educational degree an individual has
obtained.

» The categories for Y correspond to: No degree; High school;
Asoociate's; Bachelor's; Graduate degree.

» In a regression model, we consider the explanatory variables:

X1 = number of children the individual has

X {1 if either parent of individual has obtained college degree
2 pr—

0 otherwise

X3 = X1Xa (interaction variable)



Example: Ordinal Probit Regression

» Using a normal regression model for Y is inappropriate
because:

1. the normal error assumption will be severely violated
2. the labels {1,2,3,4,5} imply an “equal spacing” between
types of degree that may not exist in reality.
» We assume in probit regression that the underlying, say,
educational achievement of a person is some unobserved
continuous variable Z.

» What we observe is the ordinal, categorized version, denoted
Y.



Example: Ordinal Probit Regression

» Our model is thus:

Yi=g(Z), i=1,...,n

Zi = Bo + 1 Xi1 + BoXio + B3 Xi3 + €

€1, .. en NS N(0,1)

» The unknown parameters are: 3 = (0o, 01, 52, 33) and the
nondecreasing function g(-), which relates the latent variable
Z to the observed variable Y.

» Note g(-) can capture the location and scale of the
distribution of the Y;'s, so we may let var(e;) = 1 and let the
intercept Gy = 0.



Example: Ordinal Probit Regression

» Since Y takes on K =5 ordered values, define K — 1
“thresholds” g1, g2, g3, g4 that cut the range of Z into 5

categories:
1 if —co<z< g
2 ifgi<z< g
y=g(z)=413 ifga<z<gs
4 ifgz<z<g
5 iftga<z<o

» We will use the Gibbs sampler to approximate the joint
posterior of {167 81, 82, 83, 84, Z}



Full Conditional of 3

» The full conditional of 3 depends only on Z:

m(Bly. z,8) = 7(Bz)

> If we choose a multivariate normal prior
B ~ MVN(0, n(X'X)™?)

then the full conditional is:

n
n+1

n ’ —1v’ ’ —1
Blz ~ MVN| L (X'X) !Xz, L (X'X) ]



Full Conditional of Z

» We know Zi|8 ~ N(3'x;,1).
> Given g and Y; = y;, then Z; € [g,,—1,8),). Hence
(2B, y,8) o< N(B'x;, 1) X l<s<h)

(a constrained normal distribution), where a = gy,_1,b = gy,.
» This can be sampled from fairly easily in R.



Full Conditional of g

» Given y and z, we know g, must be between
ax = max{z : y; = k} and by = min{z; : y; = k + 1}.

» We can choose constrained normal priors on the gi's so that
the full conditional of g is N(uk,o2) constrained to the
interval [ak, by).



Example: Ordinal Probit Regression

» Example 1: Educational achievement data on 959 working
males.

» Let's use the priors: 3 ~ MVN(O, n(X/X)*l) and

4
p(g) < [] dnorm(gx, 0,100)

k=1
constrained so that g1 < g < g3 < ga.

» R example on course web page: Posterior inference is made on
B, B2, B3

> See plot of generated zi, ..., Zos9 against the number of
children for individuals 1, ..., 959.

» Different slopes for X, = 0 and X, = 1.



