
Frequentist Coverage for Bayesian Intervals

I Hartigan (1966) showed that for standard posterior intervals,
an interval with 100(1− α)% Bayesian coverage will have

P[L(X) < θ < U(X)|θ] = (1− α) + εn,

where |εn| < a/n for some constant a.
⇒ Frequentist coverage → 1− α as n →∞.

I Note that many classical CI methods only achieve
100(1− α)% frequentist coverage asymptotically, as well.



Bayesian Credible Intervals

I A credible interval (or in general, a credible set) is the
Bayesian analogue of a confidence interval.

I A 100(1− α)% credible set C is a subset of Θ such that∫
C
π(θ|X) dθ = 1− α.

I If the parameter space Θ is discrete, a sum replaces the
integral.



Quantile-Based Intervals

I If θ∗L is the α/2 posterior quantile for θ, and θ∗U is the 1− α/2
posterior quantile for θ, then (θ∗L, θ

∗
U) is a 100(1− α)%

credible interval for θ.

Note: P[θ < θ∗L|X] = α/2 and P[θ > θ∗U |X] = α/2.

⇒ P{θ ∈ (θ∗L, θ
∗
U)|X}

= 1− P{θ /∈ (θ∗L, θ
∗
U)|X}

= 1−
(

P[θ < θ∗L|X] + P[θ > θ∗U |X]

)
= 1− α.



Quantile-Based Intervals
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Example: Quantile-Based Interval

I Suppose X1, . . . ,Xn are the durations of cabinets for a sample
of cabinets from Western European countries.

I We assume the Xi ’s follow an exponential distribution.

p(Xi |θ) = θe−θXi , Xi > 0

⇒ L(θ|X) = θne−θ
Pn

i=1 xi

Suppose our prior distribution for θ is

p(θ) ∝ 1/θ, θ > 0.

⇒ Larger values of θ are less likely a priori.



Example: Quantile-Based Interval

Then

π(θ|X) ∝ p(θ)L(θ|X)

∝
(

1

θ

)
θne−θ

P
xi

= θn−1e−θ
P

xi

I This is the kernel of a gamma distribution with “shape”
parameter n and “rate” parameter

∑n
i=1 xi .

I So including the normalizing constant,

π(θ|X) =
(
∑

xi )
n

Γ(n)
θn−1e−θ

P
xi , θ > 0.



Example: Quantile-Based Interval

I Now, given the observed data x1, . . . , xn, we can calculate any
quantiles of this gamma distribution.

I The 0.05 and 0.95 quantiles will give us a 90% credible
interval for θ.

I See R example with real data on course web page.



Example: Quantile-Based Interval

I Suppose we feel p(θ) = 1/θ is too subjective and favors small
values of θ too much.

I Instead, let’s consider the noninformative prior

p(θ) = 1, θ > 0

(favors all values of θ equally).

I Then our posterior is

π(θ|X) ∝ p(θ)L(θ|X)

= (1)θne−θ
P

xi

= θ(n+1)−1e−θ
P

xi

⇒ This posterior is a gamma with parameters
(n + 1) and

∑
xi .

I We can similarly find the equal-tail credible interval.



Example 2: Quantile-Based Interval

I Consider 10 flips of a coin having P{Heads} = θ.

I Suppose we observe 2 “heads”.

I We model the count of heads as binomial:

p(X |θ) =

(
10

X

)
θX (1− θ)10−X , x = 0, 1, . . . , 10.

I Let’s use a uniform prior for θ:

p(θ) = 1, 0 ≤ θ ≤ 1.



Example 2: Quantile-Based Interval

I Then the posterior is:

π(θ|x) ∝ p(θ)L(θ|x)

= (1)

(
10

x

)
θx(1− θ)10−x

∝ θx(1− θ)10−x , 0 ≤ θ ≤ 1.

I This is a beta distribution for θ with parameters
x + 1 and 10− x + 1.

I Since x = 2 here, π(θ|x = 2) is beta(3,9).

I The 0.025 and 0.975 quantiles of a beta(3,9) are (.0602,
.5178), which is a 95% credible interval for θ.


