Frequentist Coverage for Bayesian Intervals

▶ Hartigan (1966) showed that for standard posterior intervals, an interval with $100(1-\alpha)\%$ Bayesian coverage will have

$$P[L(\mathbf{X}) < \theta < U(\mathbf{X})|\theta] = (1 - \alpha) + \epsilon_n,$$

where $|\epsilon_n| < a/n$ for some constant a.

- \Rightarrow Frequentist coverage $\rightarrow 1 \alpha$ as $n \rightarrow \infty$.
- Note that many classical CI methods only achieve $100(1-\alpha)\%$ frequentist coverage asymptotically, as well.

Bayesian Credible Intervals

- ► A **credible interval** (or in general, a **credible set**) is the Bayesian analogue of a confidence interval.
- ▶ A $100(1-\alpha)$ % credible set C is a subset of Θ such that

$$\int_{\mathcal{C}}\pi(oldsymbol{ heta}|\mathbf{X})\,doldsymbol{ heta}=1-lpha.$$

▶ If the parameter space Θ is discrete, a sum replaces the integral.

Quantile-Based Intervals

▶ If θ_L^* is the $\alpha/2$ posterior quantile for θ , and θ_U^* is the $1 - \alpha/2$ posterior quantile for θ , then (θ_L^*, θ_U^*) is a $100(1 - \alpha)\%$ credible interval for θ .

Note:
$$P[\theta < \theta_L^* | \mathbf{X}] = \alpha/2$$
 and $P[\theta > \theta_U^* | \mathbf{X}] = \alpha/2$.

$$\Rightarrow P\{\theta \in (\theta_L^*, \theta_U^*) | \mathbf{X}\}$$

$$= 1 - P\{\theta \notin (\theta_L^*, \theta_U^*) | \mathbf{X}\}$$

$$= 1 - \left(P[\theta < \theta_L^* | \mathbf{X}] + P[\theta > \theta_U^* | \mathbf{X}]\right)$$

$$= 1 - \alpha.$$

Picture:

- ▶ Suppose $X_1, ..., X_n$ are the durations of cabinets for a sample of cabinets from Western European countries.
- ▶ We assume the X_i 's follow an exponential distribution.

$$p(X_i|\theta) = \theta e^{-\theta X_i}, X_i > 0$$

$$\Rightarrow L(\theta|\mathbf{X}) = \theta^n e^{-\theta \sum_{i=1}^n x_i}$$

Suppose our prior distribution for θ is

$$p(\theta) \propto 1/\theta, \ \theta > 0.$$

 \Rightarrow Larger values of θ are less likely **a priori**.

Then

$$\pi(heta|\mathbf{X}) \propto p(heta)L(heta|\mathbf{X}) \ \propto \left(rac{1}{ heta}
ight) heta^n e^{- heta \sum x_i} \ = heta^{n-1} e^{- heta \sum x_i}$$

- ▶ This is the **kernel** of a **gamma** distribution with "shape" parameter n and "rate" parameter $\sum_{i=1}^{n} x_i$.
- So including the normalizing constant,

$$\pi(\theta|\mathbf{X}) = \frac{(\sum x_i)^n}{\Gamma(n)} \theta^{n-1} e^{-\theta \sum x_i}, \ \theta > 0.$$

- Now, given the observed data x_1, \ldots, x_n , we can calculate any quantiles of this gamma distribution.
- ▶ The 0.05 and 0.95 quantiles will give us a 90% credible interval for θ .
- See R example with real data on course web page.

- ▶ Suppose we feel $p(\theta) = 1/\theta$ is too subjective and favors small values of θ too much.
- Instead, let's consider the noninformative prior

$$p(\theta) = 1, \ \theta > 0$$

(favors all values of θ equally).

► Then our posterior is

$$egin{aligned} \pi(heta|\mathbf{X}) &\propto p(heta) L(heta|\mathbf{X}) \ &= (1) heta^n e^{- heta \sum x_i} \ &= heta^{(n+1)-1} e^{- heta \sum x_i} \end{aligned}$$

- \Rightarrow This posterior is a gamma with parameters (n+1) and $\sum x_i$.
- We can similarly find the equal-tail credible interval.

- ▶ Consider 10 flips of a coin having $P\{\text{Heads}\} = \theta$.
- ▶ Suppose we observe 2 "heads".
- We model the count of heads as binomial:

$$p(X|\theta) = {10 \choose X} \theta^X (1-\theta)^{10-X}, \quad x = 0, 1, \dots, 10.$$

Let's use a uniform prior for θ :

$$p(\theta) = 1, 0 \le \theta \le 1.$$

► Then the posterior is:

$$\pi(\theta|x) \propto p(\theta)L(\theta|x)$$

$$= (1) \binom{10}{x} \theta^{x} (1-\theta)^{10-x}$$

$$\propto \theta^{x} (1-\theta)^{10-x}, \quad 0 \le \theta \le 1.$$

- ► This is a **beta** distribution for θ with parameters x + 1 and 10 x + 1.
- ▶ Since x = 2 here, $\pi(\theta|x = 2)$ is beta(3,9).
- ▶ The 0.025 and 0.975 quantiles of a beta(3,9) are (.0602, .5178), which is a 95% credible interval for θ .