The Gamma/Poisson Bayesian Model

- If our data X_1, \ldots, X_n are iid Poisson(λ), then a gamma(α, β) prior on λ is a **conjugate** prior.

Likelihood:

$$L(\lambda | x) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-n\lambda} \lambda^{\sum x_i}}{\prod_{i=1}^{n}(x_i!)}$$

Prior:

$$p(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}, \quad \lambda > 0.$$

\implies Posterior:

$$\pi(\lambda | x) \propto \lambda^{\sum x_i + \alpha - 1} e^{-(n+\beta)\lambda}, \quad \lambda > 0.$$

\implies $\pi(\lambda | x)$ is gamma($\sum x_i + \alpha, n + \beta$).

(Conjugate!)
The posterior mean is:

\[\hat{\lambda}_B = \frac{\sum x_i + \alpha}{n + \beta} \]

\[= \frac{\sum x_i}{n + \beta} + \frac{\alpha}{n + \beta} \]

\[= \left[\frac{n}{n + \beta} \right] \left(\frac{\sum x_i}{n} \right) + \left[\frac{\beta}{n + \beta} \right] \left(\frac{\alpha}{\beta} \right) \]

Again, the data get weighted more heavily as \(n \to \infty \).
We can use the Bayesian approach to update our information about the parameter(s) of interest sequentially as new data become available.

Suppose we formulate a prior for our parameter θ and observe a random sample x_1.

Then the posterior is

$$
\pi(\theta|x_1) \propto p(\theta)L(\theta|x_1)
$$

Then we observe a new (independent) sample x_2.
We can use our previous posterior as the **new prior** and derive a **new** posterior:

\[
\pi(\theta|x_1, x_2) \propto \pi(\theta|x_1)L(\theta|x_2) \\
\quad \propto p(\theta)L(\theta|x_1)L(\theta|x_2) \\
\quad = p(\theta)L(\theta|x_1, x_2) \\
(\text{since } x_1, x_2 \text{ independent})
\]

Note this is the same posterior we would have obtained had \(x_1\) and \(x_2\) arrived at the same time!

This “sequential updating” process can continue indefinitely in the Bayesian setup.
Why Normal Models?

- Why is it so common to model data using a normal distribution?
- Approximately normally distributed quantities appear often in nature.
- CLT tells us any variable that is basically a sum of independent components should be approximately normal.
- Note \bar{X} and S^2 are independent when sampling from a normal population — so if beliefs about the mean are independent of beliefs about the variance, a normal model may be appropriate.
Why Normal Models?

- The normal model is analytically convenient (exponential family, sufficient statistics \bar{X} and S^2)
- Inference about the population mean based on a normal model will be correct as $n \to \infty$ even if the data are truly non-normal.
- When we assume a normal likelihood, we can get a wide class of posterior distributions by using different priors.
A Conjugate analysis with Normal Data (variance known)

- Simple situation: Assume data X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$, with μ unknown and σ^2 known.
- We will make inference about μ.
- The likelihood is

$$L(\mu|x) = \prod_{i=1}^{n} \left(2\pi\sigma^2\right)^{-1/2} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

- A conjugate prior for μ is $\mu \sim N(\delta, \tau^2)$:

$$p(\mu) = (2\pi\tau^2)^{-1/2} e^{-\frac{1}{2\tau^2}(\mu - \delta)^2}$$
A Conjugate analysis with Normal Data (variance known)

So the posterior is:

\[\pi(\mu|\mathbf{x}) \propto L(\mu|\mathbf{x})p(\mu) \]
\[\propto \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^2}(x_i-\mu)^2} e^{-\frac{1}{2\tau^2}(\mu-\delta)^2} \]
\[= \exp\left\{ -\frac{1}{2} \left[\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 + \frac{1}{\tau^2} (\mu - \delta)^2 \right] \right\} \]
\[= \exp\left\{ -\frac{1}{2} \left[\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i^2 - 2x_i\mu + \mu^2) + \frac{1}{\tau^2} (\mu^2 - 2\mu\delta + \delta^2) \right] \right\} \]
A Conjugate analysis with Normal Data (variance known)

So the posterior is:

\[\pi(\mu|x) \propto \exp \left\{ -\frac{1}{2} \frac{1}{\sigma^2 \tau^2} \left(\tau^2 \sum x_i^2 - 2 \tau^2 \mu n\bar{x} + n\mu^2 \tau^2
ight. \\
+ \sigma^2 \mu^2 - 2 \sigma^2 \mu \delta + \sigma^2 \delta^2 \right) \right\} \\
= \exp \left\{ -\frac{1}{2} \frac{1}{\sigma^2 \tau^2} \left[\mu^2 (\sigma^2 + n \tau^2) - 2 \mu (\delta \sigma^2 + \tau^2 n \bar{x}) \right. \\
+ \left(\delta^2 \sigma^2 + \tau^2 \sum x_i^2 \right) \right\} \\
\propto \exp \left\{ -\frac{1}{2} \left[\mu^2 \left(\frac{1}{\tau^2} + \frac{n}{\sigma^2} \right) - 2 \mu \left(\frac{\delta}{\tau^2} + \frac{n\bar{x}}{\sigma^2} \right) + k \right] \right\} \\
(\text{where } k \text{ is some constant}) \]
Hence $\pi(\mu|x) \propto \exp\left\{-\frac{1}{2} \left[\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2} \right) (\mu^2 - 2\mu \left(\frac{\delta}{\tau^2} + \frac{n\bar{x}}{\sigma^2} \right) + k) \right]\right\}$

$\propto \exp\left\{-\frac{1}{2} \left[\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2} \right) \left(\mu - \frac{\delta}{\tau^2} + \frac{n\bar{x}}{\sigma^2} \right)^2 \right]\right\}$
Hence the posterior for μ is simply a normal distribution with mean

$$\frac{\delta}{\tau^2} + \frac{n\bar{x}}{\sigma^2}$$

and variance

$$\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2}\right)^{-1} = \frac{\tau^2 \sigma^2}{\sigma^2 + n\tau^2}$$

The \textbf{precision} is the reciprocal of the \textbf{variance}.

Here, $\frac{1}{\tau^2}$ is the \textbf{prior precision} . . .

$\frac{n}{\sigma^2}$ is the \textbf{data precision} . . .

. . . and $\frac{1}{\tau^2} + \frac{n}{\sigma^2}$ is the \textbf{posterior precision}.

...
A Conjugate analysis with Normal Data (variance known)

- Note the posterior mean $E[\mu|x]$ is simply
 \[
 \frac{1/\tau^2}{1/\tau^2 + n/\sigma^2} \delta + \frac{n/\sigma^2}{1/\tau^2 + n/\sigma^2} \bar{x},
 \]
 a combination of the **prior mean** and the **sample mean**.

- If the prior is highly precise, the weight is large on δ.
- If the data are highly precise (e.g., when n is large), the weight is large on \bar{x}.
- Clearly as $n \to \infty$, $E[\mu|x] \approx \bar{x}$, and $\text{var}[\mu|x] \approx \frac{\sigma^2}{n}$ if we choose a large prior variance τ^2.
- This implies that for τ^2 large and n large, Bayesian and frequentist inference about μ will be nearly identical.