1. A discrete r.v. has a set of possible values with gaps. A continuous r.v. has a set of possible values on an unbroken interval.

2. \(A = \{ \text{rain} \} \) \(B = \{ \text{over 65} \} \)
 (a) \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
 \(= 0.4 + 0.35 - 0.15 = 0.6 \)
 (b) Need \(1 - P(A \cup B) = 1 - 0.6 = 0.4 \)
 (c) \(P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.15}{0.4} = \frac{3}{8} \)
 (d) \(P(B|A) = 0.375 \), but \(P(B) = 0.35 \). Since \(P(B|A) \neq P(B) \), \(A \) and \(B \) are not independent.

3. About \(80 + 190 = 270 \) measurements are under 100 grams, based on the histogram. \(\frac{270}{578} = 0.467 \) (anything near this is fine).
 (b) Skewed to the right (long right tail)
 (c) \(A \) Less than the mean

4. Since \(A \) and \(B \) are independent,
 \(P(A \cap B) = P(A)P(B) = (0.2)(0.7) = 0.14 \)
 \(\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.2 + 0.7 - 0.14 = 0.76 \)
 \(P(A|B) = P(A) = 0.2 \) by independence.

5. \(X \) is binomial with \(n=9 \), \(p=0.6 \)
 (a) \(P(X \geq 5) = 1 - P(X \leq 4) = 1 - 0.267 = 0.733 \)
 (b) \(P(X < 2) = P(X \leq 1) = 0.004 \)
 (c) \(P(X=8) = P(X \leq 8) - P(X \leq 7) = 0.990 - 0.929 = 0.061 \)
 (d) \(\mu = np = (9)(0.6) = 5.4 \)
6. (A) (B) a) $\sum p(x) = 0.1 + 0.3 + 0.35 + 0.2 + 0.05 = 1$
 and all $p(x) \geq 0$. \underline{Valid}.

 (b) $\mu = (0)(.1) + (1)(.3) + (2)(.35) + (3)(.2) + (4)(.05)$
 $= .3 + .7 + .6 + .2 = 1.8$

 (C) $\sigma^2 = 0^2(.1) + 1^2(.3) + 2^2(.35) + 3^2(.2) + 4^2(.05) - (1.8)^2$
 $= 4.3 - 3.24 = 1.06$
 $\Rightarrow \sigma = \sqrt{1.06} = 1.0296$

7. (A) (B) Since $A \cup A^c$ is the whole sample space, $P(A \cup A^c) = 1$.

8. (A) (B) Hypergeometric with $N = 20$, $n = 4$, $r = 6$.

 $P(X > 2) = P(X = 3) + P(X = 4) = \binom{6}{3} \binom{14}{1} + \binom{6}{4} \binom{14}{0}$
 \[= \binom{20}{4} + \binom{20}{4} \binom{14}{0} \]

9. (A) (B) (a) $0.21 + 0.35 = 0.56$
 (b) $1 - 0.26 = 0.74$

10. Use Bayes Rule. Let $A = \{\text{defective}\}$, $B = \{\text{Houston}\}$

 $P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$
 $= \frac{(0.02)(0.7)}{(0.02)(0.7) + (0.04)(0.3)} = \frac{0.14}{0.26} = 0.538$

11. $X \sim \text{Poisson} (\lambda = 2.6)$

 a) $P(X = 4) = P(X \leq 4) - P(X \leq 3) = 0.877 - 0.736 = 0.141$

 b) $P(X \geq 3) = 1 - P(X \leq 2) = 1 - 0.518 = 0.482$

 c) Let $X \sim \text{Poisson} (2.6)$

 Extra Credit: Now $\lambda = 5.2 \Rightarrow W \sim \text{Poisson} (5.2)$

 $P(W < 5) = P(W \leq 4) = 0.406$