
Chapter 10: Seasonal Models

I Many time series exhibit seasonal behavior, with basic
patterns that repeat over time according to the season.

I In Chapter 3, we saw deterministic seasonal models such as
the seasonal means model and the harmonic regression model.

I In some cases, the deterministic seasonal models are not
flexible enough to accurately capture the patterns in the series.

I We now introduce stochastic seasonal models that can work
well for more complicated seasonal time series.
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When the Deterministic Seasonal Model Fails

I Consider the co2 data set in the TSA package, which
measures carbon dioxide levels at a Canadian site over time.

I The time series plot shows clear seasonality, with higher co2
levels each winter and lower levels each summer (see plot).

I The deterministic seasonal means model and harmonic
regression model could be attempted.

I However, the residuals from these fits show significant
autocorrelations at many lags.

I Clearly, the deterministic models are not able to capture some
more subtle correlation patterns in the data.
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Seasonal ARIMA Models

I We start by considering stationary seasonal models.

I We assume the period s of the seasonality is known: For
monthly series, s = 12 and for quarterly series s = 4.

I For daily series, s = 7 if the same pattern repeats each week
(example: daily newspaper sales data).

I For hourly series, s = 24 if the same pattern repeats each day
(example: hourly temperature data).

I Consider a simple time series following the model
Yt = et −Θet−12.

I Clearly, for this model,
cov(Yt ,Yt−1) = cov(et −Θet−12, et−1 −Θet−13) = 0.

I But
cov(Yt ,Yt−12) = cov(et −Θet−12, et−12 −Θet−24) = −Θσ2e .

I Such a series is stationary, and based on this pattern, we see
that this series has nonzero autocorrelations only at lag 12.
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Seasonal MA(Q) Model

I In general, a seasonal MA(Q) model of order Q with seasonal
period s is:

Yt = et −Θ1et−s −Θ2et−2s − · · · −ΘQet−Qs

I This is a stationary process with an autocorrelation function
that is nonzero only at the seasonal lags s, 2s, . . . ,Qs.

I The ACF is a function of the Θ’s.

I Note that this seasonal MA(Q) model is a special case of an
MA model of order q = Qs that has all its θ coefficients equal
to zero, except at the seasonal lags s, 2s, . . . ,Qs.
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A Seasonal AR Model

I A seasonal model can be defined with an autoregressive
process as well.

I Consider a monthly seasonal time series following the model
Yt = ΦYt−12 + et , with |Φ| < 1 and et independent of
Yt−1,Yt−2, . . ..

I It can be shown that corr(Yt ,Yt−k) = ρk = Φρk−12 for k ≥ 1.

I Since ρ0 = 1 trivially, we have, letting k = 12,
ρ12 = Φρ0 = Φ.

I Similarly, ρ24 = Φρ12 = Φ2.

I In general, ρ12k = Φk for k = 1, 2, . . ..

I The autocorrelations are nonzero at the seasonal lags
12, 24, 36, . . . and we see that these autocorrelations decay
exponentially toward zero, just like in an ordinary AR model.
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The Zero Correlations in the Seasonal AR Model

I The autocorrelations at the other lags are zero in this model,
which can be seen as follows.

I Note that since the series is stationary, ρk = corr(Yt ,Yt−k) =
corr(Yt−k ,Yt) = corr(Yt ,Yt+k) = ρ−k .

I Recall that ρk = Φρk−12 for k ≥ 1.

I Letting k = 1, we have ρ1 = Φρ−11 = Φρ11.

I And letting k = 11, we have ρ11 = Φρ−1 = Φρ1.

I Thus ρ1 and ρ11 must both be 0.

I A similar approach will show that every autocorrelation is 0
except at the seasonal lags 12, 24, . . ..
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Seasonal AR(P) Model

I In general, a seasonal AR(P) model of order P with seasonal
period s is:

Yt = Φ1Yt−s + Φ2Yt−2s + · · ·+ ΦPYt−Ps + et

with et independent of Yt−1,Yt−2, . . ..

I This is a stationary process if the solutions of the seasonal
characteristic equation exceed 1 in absolute value.

I Note that this seasonal AR(P) model is a special case of an
AR model of order p = Ps that has all its φ coefficients equal
to zero, except at the seasonal lags s, 2s, . . . ,Ps.

I The ACF values are nonzero only at the seasonal lags
s, 2s, . . ., and for these lags the ACF resembles a mix of
exponential decay and damped sine functions.

I Specifically, we have ρks = Φk for k = 1, 2, . . . and zero at
other lags.
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More Flexible Seasonal Models

I Often in reality, seasonal time series have nonzero correlation
not only at the seasonal lags, but also at neighboring lags.

I Consider the special case of an MA model that is

Yt = et − θet−1 −Θet−12 + θΘet−13

I This model has MA characteristic polynomial
(1− θx)(1−Θx12) and hence is called a multiplicative
seasonal model.

I It can be shown that the ACF of this process is nonzero only
at lags 1,11,12, and 13.

I See the R examples for plots of the ACF for
θ = −0.5,Θ = −0.8 and for θ = 0.5,Θ = −0.8.
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Multiplicative Seasonal ARMA Models

I A very similar model to the previous one would be an MA
model of order 12 in which the only nonzero coefficients were
θ1 and θ12.

I In general, a multiplicative seasonal ARMA(p, q)× (P,Q)s
model with seasonal period s is one with a multiplicative AR
polynomial and a multiplicative MA polynomial.

I This is a special case of an ARMA model with AR order
p + Ps and MA order q + Qs, however with only
p + P + q + Q of the coefficients being nonzero.

I The model can also include a constant term θ0.

I Note that the MA model of order 12 in which the only nonzero
coefficients are θ1 and θ12 is this multiplicative ARMA model
with s = 12, and with q = Q = 1 and p = P = 0.
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Another Example Multiplicative Seasonal ARMA Model

I Consider the model

Yt = ΦYt−12 + et − θet−1

I This model (where s = 12) contains a seasonal AR term and
a nonseasonal MA term.

I So this is a multiplicative ARMA model with s = 12, and with
P = q = 1 and p = Q = 0.

I This model has exponentially decaying autocorrelations at the
seasonal lags 12, 24, . . ., and also nonzero autocorrelations at
lag 1 and at the neighbors of the seasonal lags, and zero
autocorrelations elsewhere.

I See the R examples for plots of these ACFs for
Φ = 0.75, θ = −0.4, and for Φ = 0.75, θ = 0.4.

I Sample ACFs resembling these patterns are commonly seen in
seasonal data (or differenced seasonal data), and such sample
ACF patterns should guide the analyst to choose a
multiplicative ARMA model.
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Specifying Seasonal ARMA Models

I Consider the seasonal AR(P = 1) model with s = 12,
Yt = ΦYt−12 + et .

I We simulate 3 years of these data, where Φ = 0.9.

I We can plot the true ACF and PACF for such a model.

I Then we plot the sample ACF and sample PACF for the
simulated data and see that the significant autocorrelations
tend to follow the same pattern.

I In general, we can often specify seasonal AR, seasonal MA,
and seasonal ARMA models with the help of the sample ACF
and PACF.
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Rules for Interpreting ACFs and PACFs for Seasonal
ARMA Models

I For seasonal AR(P) models, the ACF tends to tail off (decay
toward zero) at lags ks, for k = 1, 2, . . ..

I For seasonal AR(P) models, the PACF tends to cut off
(become zero) after lag Ps.

I For seasonal MA(Q) models, the ACF tends to cut off after
lag Qs.

I For seasonal MA(Q) models, the PACF tends to tail off at
lags ks, for k = 1, 2, . . ..

I For seasonal ARMA(P,Q) models, both the ACF and the
PACF tend to to tail off at lags ks, for k = 1, 2, . . ., so the
ACF and PACF are not so useful for specifying the seasonal
orders of the full SARMA model.

I Look again at the sample ACF and the sample PACF of the
simulated seasonal AR(P = 1) data.
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Specifying a Real Seasonal Data Set

I See R example on the monthly U.S. birth data.

I We work with the logged data, and we take first differences to
remove the obvious nonstationarity.

I The differenced logged series appears as if it may be
stationary.

I The ACF tails off, but the PACF cuts off after 1 or 2 periods.

I This suggests a seasonal AR(P = 1) or seasonal AR(P = 2)
model for the differenced logged data.
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Seasonal Differencing

I We have studied differencing as a valuable tool in the analysis
in some time series.

I With seasonal data, the concept of the seasonal difference (of
period s) for the series {Yt} is important.

I The seasonal difference (of period s) for {Yt} is denoted
∇sYt and is

∇sYt = Yt − Yt−s

I For a monthly series, the seasonal differences give the changes
from January to January, February to February, etc.

I For a quarterly series, the seasonal differences give the
changes from Quarter 1 to Quarter 1, etc.

I For a series of length n, the seasonal difference series will
contain n − s values.
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An Example of Seasonal Differencing

I Consider a process defined as

Yt = St + et

where St = St−s + εt , with {et} and {εt} being independent
white noise processes.

I Then {St} represents a seasonal random walk, a slowly
changing (if σ2ε is small) seasonal effect.

I For, say, monthly data, the seasonal effect for January 2016
would be the seasonal effect for January 2015, plus some
random mean-zero perturbation.
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Example of Seasonal Differencing

I Since {St} is nonstationary (being a random walk), then {Yt}
is nonstationary.

I But if we take the seasonal difference of {Yt}, we get:

∇sYt = St − St−s + et − et−s = εt + et − et−s

I This process is stationary and has the autocorrelation function
of an ARMA(0, 0)× (0, 1)s model, i.e., a seasonal MA(Q = 1)
model.
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A General Model with Seasonal Differencing

I We can generalize the previous process to include a
nonseasonal, slowly changing stochastic trend Mt :

Yt = Mt + St + et

where St = St−s + εt , and Mt = Mt−1 + ξt with {et}, {εt},
and {ξt} being independent white noise processes.

I Then {Mt} is a regular random walk, which represents a
nonseasonal trend that could be removed by ordinary
differencing.

I In fact, if we take the seasonal difference and then the first
difference of {Yt}, i.e., ∇∇sYt , we get a process that is
stationary and has nonzero autocorrelation only at lags 1,
s − 1, s, and s + 1.

I This process has the autocorrelation function of an
ARMA(0, 1)× (0, 1)s model.

Hitchcock STAT 520: Forecasting and Time Series



SARIMA Models

I We have seen that some seasonal processes can be converted
to stationary seasonal ARMA models by taking seasonal
differences and/or ordinary differences.

I This leads us to formally define the multiplicative seasonal
ARIMA model, or SARIMA model for short.

I A process {Yt} is a SARIMA process with regular orders
p, d , q and seasonal orders P,D,Q and seasonal period s if
the process

Wt = ∇d∇D
s Yt

is an ARMA(p, q)× (P,Q)s model with seasonal period s.

I Notation: We say that {Yt} is ARIMA(p, d , q)× (P,D,Q)s
model with seasonal period s.

I This is a very flexible class of models, and many real seasonal
time series can be described with SARIMA models of
relatively low orders.
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Example: The co2 Time Series

I Recall the co2 series of monthly carbon dioxide levels at a site
in Canada.

I A plot of the original time series shows an upward trend, and
we could try to remove this nonstationarity through
differencing.

I The ACF of the original time series shows notable
autocorrelations at lags 12, 24, 36, . . . , which is to be
expected for this monthly series.

I If we take first differences and plot the differenced series, we
still see seasonality clearly evident (see plot).

I The ACF plot for the first-differenced series shows the
seasonality as well.
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Seasonal Differences of the co2 Time Series

I If we take both a seasonal difference (here, a lag-12 difference)
of the co2 series, and an ordinary first difference, we see the
seasonality and nonstationarity is removed (see plot).

I After both differences are taken, the ACF plot shows
significant autocorrelation only at lags 1 and 12 (and perhaps
at lags 11 and 13).

I This leads us to the SARIMA model

∇12∇Yt = et − θet−1 −Θet−12 − θΘet−13

which is an ARIMA(0, 1, 1)× (0, 1, 1)12 model.

I Note that in this model, the coefficient of the et−13 is not a
freely varying parameter but is forced to be the product of the
other two coefficients.
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Fitting the SARIMA Model for the co2 Series

I Since seasonal ARIMA models are simply special cases of
ARIMA models, the parameter estimation is carried out
similarly as in Chapter 7.

I We can implement the estimation using the arima function in
the TSA package or the sarima function in the astsa

package.

I For the co2 data, the ML estimate of θ is 0.5792 and the ML
estimate of Θ is 0.8206, with estimated noise variance 0.5446.

I The R output also provides standard errors for the estimated
coefficients, and the estimates of θ and Θ are both highly
significant in this example.
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Model Diagnostics

I We can also diagnose the model fit using our usual tools.

I A plot of the standardized residuals from our SARIMA fit to
the co2 data shows no pattern, except for a notable outlier in
September 1998.

I The sample ACF of the residuals shows no significant
autocorrelations to speak of (just one marginally significant
value at lag 22).

I The Ljung-Box test is nonsignificant at any reasonable value
of K , indicating that the residuals’ autocorrelations are not
larger than we would expect if the model is correctly specified.
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More Model Diagnostics

I The Q-Q plot of the residuals shows approximate normality,
although the one outlier is noticeable in the Q-Q plot, and a
Shapiro-Wilk test on the residuals indicates marginal
nonnormality.

I Overfitting with an ARIMA(0, 1, 2)× (0, 1, 1)12 model turned
out to confirm the preference for the
ARIMA(0, 1, 1)× (0, 1, 1)12 model (see R example).
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Another Example of the ARIMA(0, 1, 1)× (0, 1, 1)12 Model

I This ARIMA(0, 1, 1)× (0, 1, 1)12 model that we used on the
co2 data is a very popular model for monthly seasonal
nonstationary time series.

I It was famously used in the textbook of Box and Jenkins to
analyze logged monthly airline passenger data, and the
ARIMA(0, 1, 1)× (0, 1, 1)12 model has come to be known as
the “airline model.”

I See the R example for a full analysis of that airline passenger
data with this model.

Hitchcock STAT 520: Forecasting and Time Series



Forecasting with Seasonal Models

I Since seasonal ARIMA models are special cases of ARIMA
models, forecasting and constructing prediction intervals for
future values is done in the usual way.

I Formulas for the forecast Ŷt(`) are most easily written using
recursive difference equation forms.

I If the noise components follow a normal distribution, then a
prediction interval can be found in the usual way:

Ŷt(`)± zα/2
√

var [et(`)]

I Section 10.5 of the book (p. 241-244) gives formulas for Ŷt(`)
and var [et(`)] for a variety of specific seasonal ARIMA models.

I For these seasonal models, the forecast error variance
increases as the lead time ` increases, so that predictions
become less certain farther into the future.
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Examples of Forecasting with Seasonal Models

I In practice, forecasts and prediction intervals can be obtained
easily in R using the arima function in the TSA package or the
sarima.for function in the astsa package.

I See the R examples of forecasting the co2 data, the airline
data, and the U.S. births data.
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