Chapter 10: Seasonal Models

» Many time series exhibit seasonal behavior, with basic
patterns that repeat over time according to the season.

» In Chapter 3, we saw deterministic seasonal models such as
the seasonal means model and the harmonic regression model.

» |n some cases, the deterministic seasonal models are not
flexible enough to accurately capture the patterns in the series.

» We now introduce stochastic seasonal models that can work
well for more complicated seasonal time series.
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When the Deterministic Seasonal Model Fails

» Consider the co2 data set in the TSA package, which
measures carbon dioxide levels at a Canadian site over time.

P> The time series plot shows clear seasonality, with higher co2
levels each winter and lower levels each summer (see plot).

» The deterministic seasonal means model and harmonic
regression model could be attempted.

> However, the residuals from these fits show significant
autocorrelations at many lags.

» Clearly, the deterministic models are not able to capture some
more subtle correlation patterns in the data.
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Seasonal ARIMA Models
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We start by considering stationary seasonal models.

We assume the period s of the seasonality is known: For
monthly series, s = 12 and for quarterly series s = 4.

For daily series, s = 7 if the same pattern repeats each week
(example: daily newspaper sales data).

For hourly series, s = 24 if the same pattern repeats each day
(example: hourly temperature data).

Consider a simple time series following the model

Yt = €t — @et_u.

Clearly, for this model,

cov(Yt, Yi—1) = cov(er — Oer_12,6:-1 — Oer_13) = 0.

But

cov(Ys, Yi_12) = cov(e; — Oer_12, €12 — Oer_24) = —O02.
Such a series is stationary, and based on this pattern, we see
that this series has nonzero autocorrelations only at lag 12.
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Seasonal MA(Q) Model

» In general, a seasonal MA(Q) model of order Q with seasonal
period s is:

Yi =€ — O16_5s — Ozer_2s — - — @Qet—Qs

» This is a stationary process with an autocorrelation function
that is nonzero only at the seasonal lags s,2s,..., @s.

» The ACF is a function of the ©'s.

» Note that this seasonal MA(Q) model is a special case of an
MA model of order g = Qs that has all its 8 coefficients equal
to zero, except at the seasonal lags s, 2s, ..., Qs.
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A Seasonal AR Model

| 2

>

v

A seasonal model can be defined with an autoregressive
process as well.

Consider a monthly seasonal time series following the model
Y: = ®Yi 12 + €, with |®| < 1 and e; independent of

Yeo1, Yeio, ...

It can be shown that corr( Y, Yi—k) = px = Ppr—12 for k > 1.
Since po = 1 trivially, we have, letting k = 12,

p12 = Ppo = .

Similarly, ppos = ®p1p = d2.

In general, piox = ®X for k =1,2,.. ..

The autocorrelations are nonzero at the seasonal lags

12,24 36, ... and we see that these autocorrelations decay
exponentially toward zero, just like in an ordinary AR model.
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The Zero Correlations in the Seasonal AR Model

» The autocorrelations at the other lags are zero in this model,
which can be seen as follows.

v

Note that since the series is stationary, px = corr(Y:, Yi—k) =
corr(Ye—k, Yi) = corr( Y, Yeik) = p—k-

Recall that px = Ppi_1o for k > 1.

Letting k = 1, we have p; = ®p_11 = ®p13.

And letting kK = 11, we have p11 = ®p_1 = p1.

Thus p1 and p11 must both be 0.

vVvYyyVvyy

A similar approach will show that every autocorrelation is 0
except at the seasonal lags 12,24, .. ..
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Seasonal AR(P) Model

» In general, a seasonal AR(P) model of order P with seasonal
period s is:

Ye=P1Yes +PoYr o5+ -+ PpYi_ps + €

with e; independent of Y;_1, Yi o,....

> This is a stationary process if the solutions of the seasonal
characteristic equation exceed 1 in absolute value.

» Note that this seasonal AR(P) model is a special case of an
AR model of order p = Ps that has all its ¢ coefficients equal
to zero, except at the seasonal lags s,2s, ..., Ps.

» The ACF values are nonzero only at the seasonal lags
s,2s,..., and for these lags the ACF resembles a mix of
exponential decay and damped sine functions.

> Specifically, we have ps = ®X for k = 1,2, ... and zero at
other lags.
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More Flexible Seasonal Models

» Often in reality, seasonal time series have nonzero correlation
not only at the seasonal lags, but also at neighboring lags.

» Consider the special case of an MA model that is
Yi =e —0Oer1 — Oer_12 + 0Oe;_13

» This model has MA characteristic polynomial
(1 — 0x)(1 — ©x'2) and hence is called a multiplicative
seasonal model.

» It can be shown that the ACF of this process is nonzero only
at lags 1,11,12, and 13.

> See the R examples for plots of the ACF for
#=-05,60=-0.8and for § =0.5,©0 = —0.8.
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Multiplicative Seasonal ARMA Models

> A very similar model to the previous one would be an MA
model of order 12 in which the only nonzero coefficients were
91 and 012.

» In general, a multiplicative seasonal ARMA(p, q) x (P, Q)s
model with seasonal period s is one with a multiplicative AR
polynomial and a multiplicative MA polynomial.

» This is a special case of an ARMA model with AR order
p + Ps and MA order g + @s, however with only
p+ P+ g+ Q of the coefficients being nonzero.

» The model can also include a constant term 6.

» Note that the MA model of order 12 in which the only nonzero
coefficients are 61 and 65 is this multiplicative ARMA model
with s =12, and withg=Q =1and p=P =0.
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Another Example Multiplicative Seasonal ARMA Model

» Consider the model
Ye =®Yi 10+ e —Oerq

» This model (where s = 12) contains a seasonal AR term and
a nonseasonal MA term.

» So this is a multiplicative ARMA model with s = 12, and with
P=g=1landp=Q =0.

» This model has exponentially decaying autocorrelations at the
seasonal lags 12,24, ..., and also nonzero autocorrelations at
lag 1 and at the neighbors of the seasonal lags, and zero
autocorrelations elsewhere.

» See the R examples for plots of these ACFs for
$® =0.75,0 = —0.4, and for & = 0.75,60 = 0.4.

» Sample ACFs resembling these patterns are commonly seen in
seasonal data (or differenced seasonal data), and such sample
ACF patterns should guide the analyst to choose a
multiplicative ARMA model.



Specifying Seasonal ARMA Models

» Consider the seasonal AR(P = 1) model with s = 12,
Y =®PYi_10 + €.

» We simulate 3 years of these data, where ® = 0.9.

» We can plot the true ACF and PACF for such a model.

» Then we plot the sample ACF and sample PACF for the

simulated data and see that the significant autocorrelations
tend to follow the same pattern.

» In general, we can often specify seasonal AR, seasonal MA,
and seasonal ARMA models with the help of the sample ACF
and PACF.
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Rules for Interpreting ACFs and PACFs for Seasonal

ARMA Models

» For seasonal AR(P) models, the ACF tends to tail off (decay
toward zero) at lags ks, for k =1,2,....

» For seasonal AR(P) models, the PACF tends to cut off
(become zero) after lag Ps.

» For seasonal MA(Q) models, the ACF tends to cut off after
lag Qs.

» For seasonal MA(Q) models, the PACF tends to tail off at
lags ks, for k =1,2,....

» For seasonal ARMA(P, Q) models, both the ACF and the
PACF tend to to tail off at lags ks, for k = 1,2, ..., so the
ACF and PACF are not so useful for specifying the seasonal
orders of the full SARMA model.

» Look again at the sample ACF and the sample PACF of the
simulated seasonal AR(P = 1) data.
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Specifying a Real Seasonal Data Set

» See R example on the monthly U.S. birth data.

> We work with the logged data, and we take first differences to
remove the obvious nonstationarity.

» The differenced logged series appears as if it may be
stationary.

» The ACF tails off, but the PACF cuts off after 1 or 2 periods.

» This suggests a seasonal AR(P = 1) or seasonal AR(P = 2)
model for the differenced logged data.
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Seasonal Differencing

» We have studied differencing as a valuable tool in the analysis
in some time series.

» With seasonal data, the concept of the seasonal difference (of
period s) for the series {Y;} is important.
» The seasonal difference (of period s) for {Y;} is denoted
VsY: and is
VsYi=Y:— Yis

» For a monthly series, the seasonal differences give the changes
from January to January, February to February, etc.

» For a quarterly series, the seasonal differences give the
changes from Quarter 1 to Quarter 1, etc.

» For a series of length n, the seasonal difference series will
contain n — s values.
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An Example of Seasonal Differencing

» Consider a process defined as
Yt = St + €t

where S; = S;_s + €, with {e;} and {¢;} being independent
white noise processes.

» Then {S;} represents a seasonal random walk, a slowly
changing (if o2 is small) seasonal effect.

» For, say, monthly data, the seasonal effect for January 2016
would be the seasonal effect for January 2015, plus some
random mean-zero perturbation.
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Example of Seasonal Differencing

» Since {S:} is nonstationary (being a random walk), then {Y;}
is nonstationary.

> But if we take the seasonal difference of {Y;}, we get:
VsYVe =5 St s+e—es=¢€+e —es
» This process is stationary and has the autocorrelation function

of an ARMA(0,0) x (0,1)s model, i.e., a seasonal MA(Q = 1)
model.
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A General Model with Seasonal Differencing

>
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We can generalize the previous process to include a
nonseasonal, slowly changing stochastic trend M;:

Ye = M: + St + e

where S; = Si_s + €, and My = My_1 + & with {e:}, {e:},
and {&;} being independent white noise processes.

Then {M,} is a regular random walk, which represents a
nonseasonal trend that could be removed by ordinary
differencing.

In fact, if we take the seasonal difference and then the first
difference of {Y;}, i.e., VVsY:, we get a process that is
stationary and has nonzero autocorrelation only at lags 1,
s—1,s,and s+ 1.

This process has the autocorrelation function of an
ARMA(0,1) x (0,1)s model.



SARIMA Models

> We have seen that some seasonal processes can be converted
to stationary seasonal ARMA models by taking seasonal
differences and/or ordinary differences.

» This leads us to formally define the multiplicative seasonal
ARIMA model, or SARIMA model for short.

» A process {Y;:} is a SARIMA process with regular orders
p, d, g and seasonal orders P, D, @ and seasonal period s if

the process
Wt == VdVSD Yt

is an ARMA(p, q) x (P, Q)s model with seasonal period s.

» Notation: We say that {Y:} is ARIMA(p,d, q) x (P,D, Q)s
model with seasonal period s.

» This is a very flexible class of models, and many real seasonal
time series can be described with SARIMA models of
relatively low orders.
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Example: The co2 Time Series

» Recall the co2 series of monthly carbon dioxide levels at a site
in Canada.

> A plot of the original time series shows an upward trend, and
we could try to remove this nonstationarity through
differencing.

» The ACF of the original time series shows notable
autocorrelations at lags 12, 24, 36, ..., which is to be
expected for this monthly series.

> If we take first differences and plot the differenced series, we
still see seasonality clearly evident (see plot).

> The ACF plot for the first-differenced series shows the
seasonality as well.
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Seasonal Differences of the co2 Time Series

> If we take both a seasonal difference (here, a lag-12 difference)
of the co2 series, and an ordinary first difference, we see the
seasonality and nonstationarity is removed (see plot).

» After both differences are taken, the ACF plot shows
significant autocorrelation only at lags 1 and 12 (and perhaps
at lags 11 and 13).

» This leads us to the SARIMA model
V1oVY: = e —lei_1 — Oer_120 — 00e;r_13

which is an ARIMA(0,1,1) x (0,1,1)12 model.

» Note that in this model, the coefficient of the e;_13 is not a
freely varying parameter but is forced to be the product of the
other two coefficients.
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Fitting the SARIMA Model for the co2 Series

» Since seasonal ARIMA models are simply special cases of
ARIMA models, the parameter estimation is carried out
similarly as in Chapter 7.

» We can implement the estimation using the arima function in
the TSA package or the sarima function in the astsa
package.

» For the co2 data, the ML estimate of 8 is 0.5792 and the ML
estimate of © is 0.8206, with estimated noise variance 0.5446.

» The R output also provides standard errors for the estimated
coefficients, and the estimates of 6 and © are both highly
significant in this example.
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Model Diagnostics

> We can also diagnose the model fit using our usual tools.

» A plot of the standardized residuals from our SARIMA fit to
the co2 data shows no pattern, except for a notable outlier in
September 1998.

» The sample ACF of the residuals shows no significant
autocorrelations to speak of (just one marginally significant
value at lag 22).

» The Ljung-Box test is nonsignificant at any reasonable value
of K, indicating that the residuals’ autocorrelations are not
larger than we would expect if the model is correctly specified.
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More Model Diagnostics

> The Q-Q plot of the residuals shows approximate normality,
although the one outlier is noticeable in the Q-Q plot, and a
Shapiro-Wilk test on the residuals indicates marginal
nonnormality.

» Overfitting with an ARIMA(0, 1,2) x (0,1, 1)12 model turned
out to confirm the preference for the
ARIMA(0,1,1) x (0,1,1)12 model (see R example).
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Another Example of the ARIMA(0,1,1) x (0,1,1);, Model

» This ARIMA(0,1,1) x (0,1,1)12 model that we used on the
co2 data is a very popular model for monthly seasonal
nonstationary time series.

> |t was famously used in the textbook of Box and Jenkins to
analyze logged monthly airline passenger data, and the
ARIMA(0,1,1) x (0,1,1)12 model has come to be known as
the “airline model.”

» See the R example for a full analysis of that airline passenger
data with this model.
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Forecasting with Seasonal Models

» Since seasonal ARIMA models are special cases of ARIMA
models, forecasting and constructing prediction intervals for
future values is done in the usual way.

> Formulas for the forecast Y;(¢) are most easily written using
recursive difference equation forms.

> If the noise components follow a normal distribution, then a
prediction interval can be found in the usual way:

A

Ye(€) £ zo 2/ var[e(£)]

> Section 10.5 of the book (p. 241-244) gives formulas for Y(¢)
and var[e;(¢)] for a variety of specific seasonal ARIMA models.

» For these seasonal models, the forecast error variance
increases as the lead time £ increases, so that predictions
become less certain farther into the future.
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Examples of Forecasting with Seasonal Models

» In practice, forecasts and prediction intervals can be obtained
easily in R using the arima function in the TSA package or the
sarima.for function in the astsa package.

» See the R examples of forecasting the co2 data, the airline
data, and the U.S. births data.
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