
Relationships between Two Time Series

I Most of our attention in previous chapters has been on
modeling a single time series, and on using that model to
forecast future values of the series.

I Sometimes the time series of interest is related to one (or
more) other time series, which we could call covariate time
series.

I We have seen the fish population levels over time are related
to sea temperature values over time.

I Pasture production in Africa over time is related to certain
climate variables that are measured over time.

I We can use tools such as cross-correlation and time series
regression to explore how one time series may predict or
explain another.
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Notation for Working with Two Time Series

I Let {Yt} represent the main time series of interest (the
response), and let {Xt} represent the explanatory time series
(the covariate series).

I Define the cross-covariance function as
γt,s(X ,Y ) = cov(Xt ,Ys) for each pair of integers t and s.

I Two time series {Xt} and {Yt} are called jointly (weakly)
stationary if their mean functions are constant and their
cross-covariance γt,s(X ,Y ) depends only on the time
difference t − s.
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The Cross-Correlation Function of Two Time Series

I If {Xt} and {Yt} are jointly stationary, then their
cross-correlation function (CCF) is
ρk(X ,Y ) = corr(Xt ,Yt−k) = corr(Xt+k ,Yt).

I Note that ρ0(X ,Y ) measures the contemporaneous
(same-time) linear association between X and Y .

I And ρk(X ,Y ) measures the lag-k cross-correlation, i.e, the
linear association between Xt and Yt−k .

I Note that corr(Xt ,Yt−k) need not equal corr(Xt ,Yt+k).
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More on Cross-Correlation

I Sometimes the effect of the X variable on Y only manifests
itself after a delay of a few time units.

I For example, suppose (monthly) pasture production Y is
affected by the rainfall level X two months previously.

I Suppose the variables Xt and Yt follow the regression model

Yt = β0 + β1Xt−d + et ,

where the X ’s are iid and the et are white noise, independent
of the X ’s.

I The true CCF ρk(X ,Y ) is zero at all lags except at lag
k = −d , at which lag it has the same sign as β1.

I We say here that X is “leading” Y by d time units.

I The value of X will take effect on Y at a time d units into
the future.
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Sample Cross-Correlation Function

I The sample cross-correlation function between the paired
samples X1, . . . ,Xn and Y1, . . . ,Yn is:

rk(X ,Y ) =

∑
(Xt − X̄ )(Yt−k − Ȳ )

[
∑

(Xt − X̄ )2]1/2[
∑

(Yt − Ȳ )2]1/2

where the summation is over all indices that make sense.

I Note that if X = Y , this reduces to the formula for the
sample ACF.

I Under the white-noise error model, any sample
cross-correlation values that are greater than 1.96/

√
n can be

considered significantly different from zero.
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A Sample CCF on Some Simulated Data

I See the R code for an example of simulated X1, . . . ,Xn and
Y1, . . . ,Yn (with white-noise errors) with X leading Y by
d = 2 time units.

I The theoretical CCF should be zero everywhere except lag −2.

I We see the sample CCF for these simulated data is significant
at lag −2 and marginally significant at lag 3, but having at
least one “false positive” (falsely significant) value is likely
when we look at 33 CCF values.
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A Model with Autocorrelated Errors

I The regression model we just looked at assumed the error
terms were white noise.

I In reality, with time series data, it is common that the errors
would display some autocorrelation.

I Suppose the variables Xt and Yt follow the more general
regression model

Yt = β0 + β1Xt−d + Zt ,

where the X ’s are iid and the Zt follow some ARIMA(p, d , q)
model, independent of the X ’s.

I Again here, X is “leading” Y by d time units, so that the
value of X will take effect on Y at a time d units into the
future.
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Issues with the Sample CCF when the Errors are
Autocorrelated

I When the errors are autocorrelated, using the 1.96/
√
n rule to

judge at which lags the CCF values are significant can lead to
many false positives.

I When X and Y are independent and the errors are white
noise, we would expect the 1.96/

√
n rule to produce about

5% false positives.

I But when X and Y are both AR(1) processes each with
φ = 0.75, the false positive rate is 30%.

I When X and Y are both AR(1) processes each with φ = 0.9,
the false positive rate is 53%!

I When the series are nonstationary, the problem is even worse.

I This phenomenon leads to the diagnosis of “spurious
correlations” (apparent correlations that are not really
present).
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Example of Spurious Correlation

I See the R example analyzing the monthly U.S. milk
production and monthly U.S. electricity production from
January 1994 to December 2005.

I Both series appear nonstationary (upward mean trend) and
definitely seasonal.

I The sample CCF shows significant cross-correlations at many
lags.

I But it is likely that these are spurious correlations.

I Section 11.4 discusses prewhitening, a method for
disentangling the linear association between X and Y from
their autocorrelation.

I If we take first differences and seasonal differences of the two
time series, and use the prewhiten function, we see the
sample CCF of the prewhitened data shows that the two time
series are basically uncorrelated, which is more sensible.
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Another Example of CCF with Prewhitened Data

I See the R example analyzing the weekly (logged) potato-chip
sales and weekly average price from September 1998 to
September 2000.

I Both series may be nonstationary, so we work with the first
differences.

I The sample CCF of the prewhitened differenced data shows
significant cross-correlations at only lag zero, and this sample
correlation is strongly negative.

I It appears there is contemporaneous negative correlation
between the first differences of price and sales.

I When the price from one week to the next goes down, the
sales from one week to the next tends to go up.
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Regression with Time Series

I If we want to use the covariate time series {Xt} to predict the
response time series {Yt}, then time series regression is a
useful tool.

I If both {Yt} and {Xt} have white-noise errors, then ordinary
least-squares methods can be used to regress Y1, . . . ,Yn on
X1, . . . ,Xn.

I Ordinary least squares (OLS) regression can be implemented
with the lm function in R.

I But often, the errors of the regression model are
autocorrelated.
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Regression with Time Series with Autocorrelated Errors

I Consider the regression model

Yt = β0 + β1Xt−d + Zt ,

where Zt is a noise process with some autocovariance function
γz(s, t).

I More generally, we could have several explanatory time series
in the regression model.

I If Zt follows a particular stationary ARMA model, we could
identify an operator π(B) that will transform Zt into white
noise: π(B)Zt = et .

I In other word, this operator will whiten Zt .

I Then the operator can be applied to the entire regression
model and weighted least squares can be run on the computer
to estimate the β’s.
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Details about Time Series Regression with Autocorrelated
Errors

I The problem is that we do not know in advance the process
that Zt follows.

I In practice, we can guess this process based on the residuals
from an OLS fit and proceed as follows:

1. Run an OLS regression of Yt on Xt (or on the several covariate
series, if there is more than one) and retain the residuals from
this OLS fit.

2. Specify some ARMA-type model for the residuals, using our
usual specification techniques.

3. Run weighted least squares (WLS) with the noise process
specified to follow that ARMA model.

4. Check to see whether the residuals from this WLS fit resemble
white noise, and repeat (2)-(4) using another ARMA model if
they do not.
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Implementing Time Series Regression with Autocorrelated
Errors

I This approach can be implemented in R with the arima

function in the TSA package or the sarima function in the
astsa package.

I With each function, the covariate time series are named in the
xreg argument.

I See the R example of the regression of logged sales on price in
the Bluebird potato chip data.

I See the R example of the regression of cardiovascular
mortality on time, (centered) temperature, squared
temperature, and particulate level.

I We will examine a public transportation time series regression
example after discussing outlier detection.
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A Time Series Regression with Lagged Variables and a
SARIMA Noise Process

I In the previous examples, we set d = 0; that is, X did not
“lead” Y in time.

I When appropriate, we could use Xt−d instead of Xt in the
regression model.

I When predicting the recruitment (fish population) value Y
based on the SOI level X , there is evidence that X leads Y by
about 6 months (see lagged scatterplot matrix in R).

I We fit the model

Yt = β0 + β1Xt−6 + β2Dt−6 + β3Dt−6 × Xt−6 + Zt ,

where Dt is a dummy variable that is 1 if SOI > 0 and 0
otherwise.

I An examination of the residuals after a WLS fit shows
seasonality, so we include a seasonal AR component in our
model for the noise process (see R example).
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