
Interventions and Outliers

I We now discuss the situation of particular regions of a time
series (or particular points along a time series) at which the
behavior of the series changes or is unusual compared to the
bulk of the series.

I Sometimes an outside agency causes the underlying process to
change abruptly.

I In other cases, we simply observe an unusual value at a
particular time (or at several times).
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Intervention Analysis

I When some outside force causes the behavior of a time series
process to change abruptly, this is called an intervention.

I See the plot of the airmiles data in R, which shows the
monthly airline passenger-miles in the U.S. from January 1996
to May 2005.

I The seasonality is clearly apparent, with higher travel in the
summer and in December.

I There is an overall increasing linear trend, but there is a
substantial drop in September 2001, clearly since the terrorist
attacks that month caused a decrease in air travel.

I After the sudden drop, the air travel gradually continued to
rise.

I In this case, the mean function changes at a specific time
point.
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Causes of Interventions

I Sometimes an intervention is caused by a natural event, such
as a weather disaster causing an abrupt change in population
level for human or animal inhabitants of a certain location.

I Or sometimes the change can be manmade, such as a new
seatbelt law or new speed limit causing changes in traffic
death patterns.

I In the airmiles example, the intervention caused a change in
the mean function.

I In other situations, the intervention could cause a change in
the autocovariance function (which includes the variance
function, i.e., the lag-0 autocovariance), but we will not
discuss intervention analysis other than modeling the effects
on the mean function.
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A Simple Single-Intervention Model

I Suppose we have the observed series Yt = mt + Nt , where Nt

is some specific ARIMA process.

I The process {Nt} is what the process would look like if there
were no intervention.

I The mt is the change in the mean function due to the
intervention, which occurs at time T .

I Before time T , we see that mt is constant at zero.

I The pre-intervention time series data, {Yt}, t < T , can be
used to specify the model for Nt .

I Define the step function S
(T )
t to be 1 if t ≥ T and 0

otherwise; this is an indicator of being in the post-intervention
time period.

I Then the pulse function P
(T )
t = S

(T )
t − S

(T )
t−1 is 1 if t = T and

0 otherwise.
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More on the Single-Intervention Model

I If the intervention results in an immediate and permanent
shift in the mean function, we can model mt as:

mt = ωS
(T )
t

where ω is the permanent change in the mean.

I If ω > 0, the mean function shifts up at time T .

I If ω < 0, the mean function shifts down at time T .

I We can formally test whether ω = 0 to determine whether the
intervention has any significant effect at all.

I But note that the pre-intervention and post-intervention data
are not two independent samples; they are autocorrelated.
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Delays and Gradual Onsets of Interventions

I If there is a known delay of d time units between the time of
the intervention and when it takes effect, then we can model
mt as:

mt = ωS
(T )
t−d

I In other cases, the intervention may take effect on the mean
function only gradually, eventually reaching its full effect.

I In this case, we can specify mt with something similar to an
AR(1) model:

mt = δmt−1 + ωS
(T )
t−1

with initial condition m0 = 0.

I This is equivalent to

mt = ω
1− δt−T

1− δ
, for t > T

and mt = 0 if t ≤ T , where 0 < δ < 1.
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More on Gradual Onsets of Interventions

I As t grows large, mt approaches ω/(1− δ), which is the
long-run effect of the intervention on the mean function, the
ultimate change in the mean function (see R example graph
11.3(b)).

I When t = T + log(0.5)/ log(δ), the intervention effect
reaches half of its ultimate value, so this time duration
log(0.5)/ log(δ) is called the half-life of the intervention effect.

I If δ is near 0, the half-life is small, and the full effect of the
intervention is quickly felt.

I If δ is near 1, the half-life is large, and the full effect of the
intervention takes a long time to be felt.

I In the extreme case when δ = 1, then mt = ω(T − t) for
t ≥ T and 0 otherwise.

I This corresponds to a linear intervention effect with slope ω
that continues to increase (if ω > 0) linearly over time (see R
example graph 11.3(c)).
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Some Models for Types of Interventions

I If the intervention only affects the mean function at time T ,
we can model it as:

mt = ωP
(T )
t

where P
(T )
t is the pulse variable that is 1 if t = T and 0

otherwise.

I If the intervention effect dies out gradually, we can model it
as:

mt = δmt−1 + ωP
(T )
t

or equivalently, mt = ωδT−t for t ≥ T .

I This would imply that the intervention immediately changes
the mean function by ω, but then its effect dies off over time
geometrically by a factor of δ.
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A Model for a Delayed Intervention

I We could also model a delay before the intervention takes
effect; for example, for a one-time-unit delay:

mt = δmt−1 + ωP
(T )
t−1

with m0 = 0 (see R example graph 11.4(a)).
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The Backshift Operator

I Recall the backshift operator B, defined so that Bmt = mt−1

and BP
(T )
t = P

(T )
t−1.

I Using the previous model:

mt = δmt−1 + ωP
(T )
t−1

⇒ mt − δBmt = ωBP
(T )
t

⇒ (1− δB)mt = ωBP
(T )
t

so that

mt =
ωB

(1− δB)
P
(T )
t .

I Furthermore, note that (1− B)S
(T )
t = P

(T )
t , or equivalently

S
(T )
t = [1/(1− B)]P

(T )
t , so these models for mt can be

specified in terms of either the pulse function or the step
function.
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More Complex Intervention Models

I The model

mt =
ω1B

(1− δB)
P
(T )
t +

ω2B

(1− B)
P
(T )
t

describes an intervention effect that (after a one-time-unit
delay) achieves a value of ω1 + ω2 and then gradually fades to
its limiting value of ω2 (see R example graph 11.4(b) for the
case when ω1 > 0, ω2 > 0).

I The model

mt = ω0P
(T )
t +

ω1B

(1− δB)
P
(T )
t +

ω2B

(1− B)
P
(T )
t

describes an intervention effect that immediately achieves a
value of ω0, then (after a one-time-unit delay) changes
abruptly to a value of ω1 + ω2 and then gradually fades to its
limiting value of ω2 (see R example graph 11.4(c) for the case
when ω0 > 0, ω1 < 0, ω2 < 0).
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Estimating the Parameters of the Intervention Model

I The ARIMA model for the Nt process is specified using the
pre-intervention data.

I Then maximum likelihood can be used to estimate the model
parameters, including any ω’s and δ, as well as the parameters
for the ARIMA model specified for Nt .
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Modeling the Air Miles Data

I Based on the full time series plot of the airmiles data, there
seemed to be an immediate change in the mean function at
the intervention time T (September 2001).

I The intervention effect gradually gets smaller as time goes on.

I The following model was used for the intervention effect:

mt = ω0P
(T )
t +

ω1

1− ω2B
P
(T )
t

I Under this model, the immediate change to the mean
response function is ω0 + ω1, while the effect k time units
after T is ω1(ω2)k .
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Specifying the Model for the Air Miles Data

I Based on the pre-intervention airmiles data (through August
2001), there appears to be nonstationarity and seasonality
(with seasonal period s = 12).

I We thus take both the first differences and the seasonal
(s = 12) differences.

I After doing that, based on the ACF and PACF, we tentatively
specify an MA(1) model for the differenced and seasonally
differenced pre-intervention data.

I For our final model, we will use a seasonal
ARIMA(0, 1, 1)× (0, 1, 0)12 model for Nt and also incorporate
our intervention model for mt .

I But from the standardized residual plot, we note a serious
outlier, so we will wait to fit the final model until we discuss
handling outliers.
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Outliers in Time Series

I Outliers are individual observations that are highly unusual
relative to the pattern of the overall time series.

I They may be due to measurement error or data recording
error, but also may occur because the underlying process
briefly changes for some reason.

I We will define two types of outliers: the additive outlier (AO)
and the innovative outlier (IO).

I An additive outlier at time T is essentially an intervention
with a pulse response at time T .

I With an AO at time T , the time series is only affected at time
T .

I With an IO at time T , the time series is affected at and after
time T , but the effect of the IO grows less as time gets
farther away from T .
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Modeling an Additive Outlier

I If a time series has an additive outlier (AO) at time T , it is
perturbed additively such that:

Y
′
t = Yt + ωAP

(T )
t

where {Yt} represents the unperturbed process.

I So Y
′

is the process that may be affected by outliers, and Y
is what the process would be if there were no outliers.

I To summarize: Y
′
T = YT + ωA, but Y

′
t = Yt for t 6= T , so

the AO only affects the series at time T .
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Modeling an Innovative Outlier

I If a time series has an innovative outlier (IO) at time T , the
error at time T is perturbed such that: e

′
t = et + ωI at time

T but e
′
t = et when t 6= T .

I Recall that a stationary model can be written in general linear
process form as a linear combination of earlier error terms:

Yt = et + ψ1et−1 + ψ2et−2 + · · ·

I So an IO will affect the process not only at time T , but at
later times:

Y
′
t = Yt + ψt−TωI

where this weight ψt−T is 0 when t < T , is 1 when t = T ,
and grows smaller as t increases past T .

I Thus the effect of the IO continues on throughout time, but it
is most pronounced at time T and soon after that.
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Detecting Innovative Outliers

I The detection of an IO is based on the residuals at ,
t = 1, 2, . . . , n.

I If the process has exactly one IO at time T , then
aT = ωI + eT at that time, but for all other times, at = et .

I Since the unknown eT is assumed to have mean zero, we can
estimate ωI by ω̃I = aT .

I Since λ1,T = aT/σ has a standard normal distribution under
the null hypothesis of no outliers, we would reject this null at
the 0.05 significance level and conclude there is an IO at time
T if |aT/σ| > 1.96.

I In practice, we must estimate σ, but for large samples, this
does not affect the properties of the test very much.
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Checking All Observations for Innovative Outliers

I That previous decision rule assumes that we are checking
whether one single observation, at some known time T , is an
IO.

I In practice, we probably will not know beforehand where the
IO could occur, so we will check all observations to see
whether any are IOs.

I Since we are doing multiple simultaneous tests, we should do
a Bonferroni correction to prevent false detection of IOs.

I We define the maximum absolute standardized residual to be
λ1 = max1≤t≤n |at/σ| and we declare the observation with the
largest absolute standardized residual to be an IO if λ1
exceeds the quantile of the standard normal distribution that
cuts off area 0.025/n in the upper tail.
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Properties of the Test for Innovative Outliers

I This procedure guarantees that the probability of false outlier
detection of an outlier is no more than 0.05.

I But if ML is used to estimate σ, the power to detect an IO
may be weakened, since the outlier will hinder the estimation
of σ.

I To improve power, a robust estimator of σ can be used, such
as

√
2/π times the mean absolute residual.

I If an outlier is found, it can be incorporated into the model
(more on that later) and the process can be repeated to check
for outliers in the revised model.
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Detecting Additive Outliers

I The detection of an AO at time T is more complicated since
the residual at is affected by the AO at all times at or past T .

I The test statistic λ2,T for checking for an AO at time T is a
weighted function of the standardized residuals (given on page
258).

I In practice, we probably will not know beforehand where the
AO could occur, so we will check all observations to see
whether any are AOs, and we again do a Bonferroni correction
to account for the simultaneous tests.
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Determining Whether an Outlier is Additive or Innovative

I We may not know beforehand whether an outlier is an IO or
an AO.

I One possible rule, if we detect an outlier at time T , is to
declare it an IO if |λ1,T | > |λ2,T | and declare it an AO
otherwise.

I Once an outlier is found, we can incorporate it into the model
using the arima or arimax functions.

I After the model is refit incorporating the outlier, we could
repeat the check for outliers until no more outliers are
detected.
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A Simulated Time Series Example with an Outlier

I In an R example, we simulate a time series following an
ARIMA(1, 0, 1) model, but we include an additive outlier at
time t = 10 (see plot of data).

I The ACF of this data set shows a damped sine wave pattern,
and the PACF cuts off after lag 1, so we tentatively specify an
AR(1) model.

I The detectAO and detectIO functions were used on the
fitted AR(1) object, and observations 9, 10, 11 were marked
as potential AOs, and observations 10 and 11 were marked as
potential IOs.

I Of all these, the test statistic identifying observation 10 as an
AO had the largest absolute value, so we tentatively mark
observation 10 as an AO and incorporate this into the model
via a dummy variable in the xreg argument.
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More on the Simulated Example with an Outlier

I Once this AO at observation 10 is incorporated into the
model, the estimated coefficients do change a good bit, and
no further outliers are detected.

I But the diagnostics on the revised model shows a large lag-1
autocorrelation in the ACF plot of the residuals.

I This leads us to include an MA(1) term in the model, making
the model an ARIMA(1, 0, 1) + AO at T = 10.

I This final model shows no further outliers, and the residuals
resemble white noise without excessively large
autocorrelations.
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A Real Time Series Example with an Outlier

I We now revisit the seasonal ARIMA(0, 1, 1)× (0, 1, 1)12
model that we used for the co2 data set in the TSA package
in Chapter 10.

I The standardized residuals plot shows one quite large residual
(for September 1998).

I The detectAO and detectIO functions mark observation 57
(which is September 1998) as a potential IO.

I We incorporate this IO into the model using the io argument
in the arimax function.

I In the revised model, the MA and seasonal MA coefficients do
not change much, but the IO effect is highly significant and
the AIC is improved.

I The diagnostics show no problem, so we may use this as our
final model.
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Returning to the Air Miles Data

I Recall that for the airmiles model, we chose a seasonal
ARIMA(0, 1, 1)× (0, 1, 0)12 model for Nt and also incorporate
our intervention model for mt , to account for the intervention
due to the September 2001 event.

I But from the standardized residual plot, we noted a serious
outlier, and we now use our outlier techniques to handle it.

I The detectAO function marks observation 25 as an AO, but
due to the seasonal differencing and first differencing, we see
that the observations 12 and 13 are really the ones that break
from the pattern we would expect from their month and year
(see plot of logged airmiles data).
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More on the Air Miles Data

I The December 2002 value also breaks from the pattern to
some extent.

I These three points can be marked as AOs with the xreg

arguments, and the nature of the intervention can be specified
with the xtransf and transfer arguments.

I The fit of the model seems good (see plot of observed data
with fitted values).
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The Estimated Intervention Effect for the Air Miles Data

I Recall the model that was used for the intervention effect:

mt = ω0P
(T )
t +

ω1

1− ω2B
P
(T )
t

I Under this model, the immediate change to the mean
response function is ω0 + ω1, while the effect k time units
after T is ω1(ω2)k .

I Using our estimates of ω0, ω1, ω2, we see that the mean
log-airmiles immediately changed by −0.0949− 0.2715.

I The immediate percent reduction, in terms of airmiles, is
[1− exp(−0.0949− 0.2715)]× 100% = 31%.

I The change in log-airmiles k months after September 2001 is
−0.2715(0.8139)k .

I See the example R code for a plot of this intervention effect
over time.
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A Time Series Regression Example with an Outlier

I We now examine a public transportation time series regression
example.

I We wish to use the monthly gasoline prices in Denver (from
August 2000 to March 2006) to predict the monthly number
of boardings on public transportation (both variables are
log-transformed to account for right-skewness).

I Both series show increasing trend, especially the gas-price
series, and the boardings series appears seasonal.

I An ARIMA(2, 1, 0) model was specified for the logged price
data, based on its sample ACF and PACF.

I The sample CCF on prewhitened data based on this model
shows significant positive contemporaneous cross-correlation
(makes sense), and a significant CCF value at lag 15 (strange;
do boardings lead price by 15 months? Probably not).
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More on Regression Example with an Outlier

I An OLS fit was done, and based on the residuals, a seasonal
ARIMA(2, 0, 0)× (1, 0, 0)12 model for the noise process was
specified.

I Upon fitting this regression model, the AR(2) coefficient was
not significant, so we removed it, and this improved the
model.

I A plot of the standardized residuals shows a large positive
residual for March 2004, and somewhat less notably, a couple
of sizable negative residuals.

I The detectAO and detectIO functions find an AO at time
32 (March 2003) and an IO at time 44 (March 2004).

I Since the March 2003 outlier has a larger absolute test
statistic, we incorporate this AO into the model.
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Completing the Boarding Regression Example

I The ACF of the residuals showed a significant lag-3
autocorrelation so the model for the noise process was altered
to a ARIMA(1, 0, 3)× (1, 0, 0)12 model.

I The MA(1) and MA(2) terms’ coefficients were not
significant, so they were fixed to be zero (not appearing in the
model).

I After those alterations, no more outliers were detected, and
the model diagnostics showed no problems.

I Note: In the model with the outlier unaccounted for, logged
price was NOT a significant predictor of logged boardings.

I But when we account for the outlier, we see that logged gas
price DOES have a significant (positive) effect on logged
boardings.

I It turns out that in March 2003, there was a major snowstorm
that shut down Denver and altered the apparent relationship
between gas price and boardings.
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