STAT 520: Forecasting and Time Series

David B. Hitchcock
University of South Carolina
Department of Statistics
What are Time Series Data?

Time series data are collected sequentially over time.

Some common examples include:

1. Meteorological data (temperatures, precipitation levels, etc.) taken daily or hourly
2. Sales data taken annually
3. Heart activity measured at each millisecond

The major goals of time series analysis are: (1) to model the stochastic phenomenon that produces these data; and (2) to predict or forecast the future values of the time series.

A key aspect of time series data is that observations measured across time are typically dependent random variables, not independent r.v.’s.
Some Time Series Examples

▶ See annual Los Angeles rainfall plot in R. There is substantial variation in rainfall amount across years.
▶ Are consecutive years related? Can we predict a year’s rainfall amount based on the previous year’s amount?
▶ Scatter plot of one year’s rainfall against previous year’s rainfall shows little association.
▶ See color property value plot in R. Can we predict a batch’s color property based on the previous batch’s value?
▶ Scatter plot of one batch’s color value against previous batch’s value shows some positive association.
▶ See Canadian hare abundance plot in R. Can we predict a year’s abundance based on the previous year’s abundance?
▶ Scatter plot of one year’s abundance against previous year’s abundance shows clear positive association.
Some Time Series Examples with Seasonality

- See monthly Dubuque temperature plot in R. Notice the regular pattern.
- These data show seasonality: we see that observations that are 12 months apart are related.
- In the Dubuque data, each January temperature is low, while each July temperature is high.
- A seasonal pattern is also seen in the monthly oil filter sales data.
- Certain months regularly see high sales while other months regularly see low sales.
Some Examples with Multiple Time Series

▶ See Southern Oscillation Index (SOI) and Recruitment time series plots.

▶ We may investigate how SOI and the fish population are related over time.

▶ The fMRI time series plots show several similar time series taken under different experimental conditions.
Chapter 2: Fundamental Mathematical Concepts

- An observed time series can be modeled with a *stochastic process*: a sequence of random variables taken across time \(\{Y_t, t = \ldots, -2, -1, 0, 1, 2, \ldots\} \).
- The probability structure of a stochastic process is determined by the set of all joint distributions of all finite sets of these r.v.’s.
- If these joint distributions are *multivariate normal*, it is simpler: Knowing the means, variances, and covariances of the \(Y_t \)'s tells us everything about the joint distributions.
Moments (Means, Variances, Covariances)

- The mean function of a stochastic process \{Y_t\}

\[\mu_t = E(Y_t) \text{ for all } t \]

gives the expected value of the process at time \(t \).
- \(\mu_t \) could vary across time.
- The autocovariance function is denoted:

\[\gamma_{t,s} = \text{cov}(Y_t, Y_s) \text{ for } t, s \]

where
\[\text{cov}(Y_t, Y_s) = E[(Y_t - \mu_t)(Y_s - \mu_s)] = E(Y_t Y_s) - \mu_t \mu_s. \]

- The autocorrelation function is denoted:

\[\rho_{t,s} = \text{corr}(Y_t, Y_s) \text{ for } t, s \]

where \(\text{corr}(Y_t, Y_s) = \text{cov}(Y_t, Y_s)/[\text{var}(Y_t)\text{var}(Y_s)]^{1/2}. \]
Interpreting Correlations and Covariances

- Both autocovariance and autocorrelation measure the linear dependence between the process’s values at two different times.
- The autocorrelation is scaled to be between -1 and 1 and is easier to interpret.
- Many time series processes have positive autocovariance and autocorrelation:
 - If $\gamma_{t,s} > 0$, then: If Y_t is large (small), then Y_s tends to be large (small).
 - If $\gamma_{t,s} < 0$, then: If Y_t is large, then Y_s tends to be small (and vice versa).
- Note $\gamma_{t,t} = var(Y_t) = E[(Y_t - \mu_t)^2] = E(Y_t^2) - \mu_t^2$.
Important Results

\[
cov \left[\sum_{i=1}^{m} c_i Y_{t_i}, \sum_{j=1}^{n} d_j Y_{s_j} \right] = \sum_{i=1}^{m} \sum_{j=1}^{n} c_i d_j \text{cov}(Y_{t_i}, Y_{s_j}).
\]

A special case of this result:

\[
\text{var} \left[\sum_{i=1}^{n} c_i Y_{t_i} \right] = \sum_{i=1}^{n} c_i^2 \text{var}(Y_{t_i}) + 2 \sum_{i=2}^{n} \sum_{j=1}^{i-1} c_i c_j \text{cov}(Y_{t_i}, Y_{t_j}).
\]
Example: Let Y_1 be a r.v. with $E(Y_1) = 0$ and $\text{var}(Y_1) = 4$ and Y_2 be a r.v. with $E(Y_2) = 0$ and $\text{var}(Y_2) = 9$, and let $\text{cov}(Y_1, Y_2) = 1$.

Find $\text{corr}(2Y_1 + Y_2, 3Y_1 - 2Y_2)$.

To calculate the correlation between two random quantities: First calculate the covariance between the two quantities; then calculate the variance of each quantity; and then plug into the formula for correlation.
Continuation of Calculating a Correlation

- **Covariance:**
 \[
 \text{cov}(2Y_1 + Y_2, 3Y_1 - 2Y_2) = \\
 6\text{cov}(Y_1, Y_1) - 4\text{cov}(Y_1, Y_2) + 3\text{cov}(Y_2, Y_1) - 2\text{cov}(Y_2, Y_2) = \\
 6(4) - 4(1) + 3(1) - 2(9) = 24 - 4 + 3 - 18 = 5.
 \]

- **Variances:**
 \[
 \text{var}(2Y_1 + Y_2) = \text{cov}(2Y_1 + Y_2, 2Y_1 + Y_2) = \\
 4\text{var}(Y_1) + 2\text{cov}(Y_1, Y_2) + 2\text{cov}(Y_2, Y_1) + \text{var}(Y_2) = \\
 4(4) + 2(1) + 2(1) + 9 = 29.
 \]
 \[
 \text{var}(3Y_1 - 2Y_2) = \text{cov}(3Y_1 - 2Y_2, 3Y_1 - 2Y_2) = \\
 9\text{var}(Y_1) - 6\text{cov}(Y_1, Y_2) - 6\text{cov}(Y_2, Y_1) + 4\text{var}(Y_2) = \\
 9(4) - 6(1) - 6(1) + 4(9) = 60.
 \]

- **Formula for Correlation:**
 \[
 \text{corr}(2Y_1 + Y_2, 3Y_1 - 2Y_2) = \frac{5}{\sqrt{(29)(60)}} \approx 0.12.
 \]
A simple time series process: The Random Walk

- Let e_1, e_2, \ldots be a sequence of independent and identically distributed (iid) r.v.’s, each having mean 0 and variance σ_e^2.
- Consider the time series:

 \[Y_1 = e_1 \]
 \[Y_2 = e_1 + e_2 \]
 \[\vdots \]
 \[Y_t = e_1 + e_2 + \cdots + e_t \]

- In other words, $Y_t = Y_{t-1} + e_t$, where initially $Y_1 = e_1$.
- Then Y_t is the position on a number line (at time t) of a walker who is taking random (forward or backward) steps (of sizes e_1, e_2, \ldots, e_t) along the number line.
For this random walk process, the mean function $\mu_t = 0$ for all t, since

$$E(Y_t) = E(e_1 + e_2 + \cdots + e_t) = 0 + 0 + \cdots + 0 = 0$$

and

$$\text{var}(Y_t) = \text{var}(e_1 + e_2 + \cdots + e_t) = \sigma_e^2 + \sigma_e^2 + \cdots + \sigma_e^2 = t\sigma_e^2$$

since all the e_i’s are independent.
Autocovariance Function of the Random Walk

For $1 \leq t \leq s$,

$$
\gamma_{t,s} = \text{cov}(Y_t, Y_s) = \text{cov}(e_1 + e_2 + \cdots + e_t, e_1 + e_2 + \cdots + e_t + e_{t+1} + \cdots + e_s)
$$

From the formula for covariance of sums of r.v.'s, we have

$$
\text{cov}(Y_t, Y_s) = \sum_{i=1}^{s} \sum_{j=1}^{t} \text{cov}(e_i, e_j),
$$

but these covariance terms are zero except when $i = j$, so

$$
\text{cov}(Y_t, Y_s) = t \sigma_e^2, \text{ for } 1 \leq t \leq s.
$$
The autocorrelation function is easily found to be $\sqrt{t/s}$, for $1 \leq t \leq s$.

From this, note $\text{corr}(Y_1, Y_2) = \sqrt{1/2} = 0.707$;
$\text{corr}(Y_{24}, Y_{25}) = \sqrt{24/25} = 0.98$;
$\text{corr}(Y_1, Y_{25}) = \sqrt{1/25} = 0.20$.

Values close in time are more strongly correlated than values far apart in time.

And neighboring values later in the process are more strongly correlated than neighboring values early in the process.
Let e_1, e_2, \ldots be a sequence of independent and identically distributed (iid) r.v.’s, each having mean 0 and variance σ_e^2.

Consider the time series:

$$Y_t = \frac{e_t + e_{t-1}}{2}.$$

For this moving average process, the mean function $\mu_t = 0$ for all t, since $E(Y_t) = E[(e_t + e_{t-1})/2] = 0.5E[e_t + e_{t-1}] = 0$, and $\text{var}(Y_t) = \text{var}[(e_t + e_{t-1})/2] = 0.25\text{var}[e_t + e_{t-1}] = 0.25 \times 2\sigma_e^2 = 0.5\sigma_e^2$ since all the e_i’s are independent.
\[\text{cov}(Y_t, Y_{t-1}) = \text{cov} \left(\frac{e_t + e_{t-1}}{2}, \frac{e_{t-1} + e_{t-2}}{2} \right) \]
\[= 0.25 \left[\text{cov}(e_t, e_{t-1}) + \text{cov}(e_t, e_{t-2}) + \text{cov}(e_{t-1}, e_{t-1}) + \text{cov}(e_{t-1}, e_{t-2}) \right] \]
\[= 0.25 [0 + 0 + \text{cov}(e_{t-1}, e_{t-1}) + 0] = 0.25 \sigma_e^2 \]

- And

\[\text{cov}(Y_t, Y_{t-2}) = \text{cov} \left(\frac{e_t + e_{t-1}}{2}, \frac{e_{t-2} + e_{t-3}}{2} \right) = 0, \]

since there are no overlapping e terms here, and all the \(e_i \)'s are independent.

- Similarly, \(\text{cov}(Y_t, Y_{t-k}) = 0 \) for all \(k > 1 \).
From this, note

$$
\rho_{t,s} = \begin{cases}
1, & \text{for } |t - s| = 0 \\
0.5, & \text{for } |t - s| = 1 \\
0, & \text{for } |t - s| > 1
\end{cases}
$$

So $\rho_{t,t-1}$ is the same no matter what t is, and in fact, for any k, $\rho_{t,t-k}$ is the same no matter what t is.

This is related to the concept of stationarity.
Stationarity

- If a process is stationary, this implies that the laws that govern the process do not change as time goes on.

- A process is \textit{strictly stationary} if the entire joint distribution of \(n \) values is the same as the joint distribution of any other \(n \) time-shifted values of the process, no matter when the two sequences start.

- For example, with a stationary process, the joint distribution of \(Y_1, Y_3, Y_4 \) would be the same as the joint distribution of \(Y_6, Y_8, Y_9 \), and similarly for any such pairs of sequences.
Note that with a stationary process: $E(Y_t) = E(Y_{t-k})$ for all t and k, so this implies that the mean function of any stationary process is constant over time.

Also, with a stationary process: $\text{var}(Y_t) = \text{var}(Y_{t-k})$ for all t and k, so the variance function of any stationary process is constant over time.

Note: A function that is constant over time is one that does not depend on t.
Also, if the process is stationary, the bivariate distribution of \((Y_t, Y_s)\) is the same as the bivariate distribution of \((Y_{t-k}, Y_{s-k})\) for all \(t, s, k\).

So \(\text{cov}(Y_t, Y_s) = \text{cov}(Y_{t-k}, Y_{s-k})\) for all \(t, s, k\).

Letting \(k = s\), we have \(\text{cov}(Y_t, Y_s) = \text{cov}(Y_{t-s}, Y_0)\); letting \(k = t\), we have \(\text{cov}(Y_t, Y_s) = \text{cov}(Y_0, Y_{s-t})\).

So \(\text{cov}(Y_t, Y_s) = \text{cov}(Y_0, Y_{|t-s|})\).

So for a stationary process, the covariance between any two values depends only on the lag in time between the values, not on the actual times \(t\) and \(s\).

For a stationary process, we can express our autocovariance and autocorrelation functions simply in terms of the time lag \(k\):

\[\gamma_k = \text{cov}(Y_t, Y_{t-k}) \] and \[\rho_k = \text{corr}(Y_t, Y_{t-k}). \]
A process is **weakly stationary** or **second-order stationary** if

1. The mean function is constant over time, and
2. \(\gamma_{t,t-k} = \gamma_{0,k} \) for every time \(t \) and lag \(k \)

Any process that is strictly stationary is also weakly stationary.

But a process could be weakly stationary and NOT strictly stationary.

In the special case that all joint distributions for the process are multivariate normal, then being weakly stationary is **equivalent** to being strictly stationary.
The white noise process is a simple example of a stationary process.

White noise is simply a sequence of iid r.v.’s \(\{e_t\} \).

White noise is strictly stationary since

\[
\begin{align*}
P[e_{t_1} \leq x_1, \ldots, e_{t_n} \leq x_n] & = P[e_{t_1} \leq x_1] \cdots P[e_{t_n} \leq x_n] \\
& = P[e_{t_1-k} \leq x_1] \cdots P[e_{t_n-k} \leq x_n] \\
& = P[e_{t_1-k} \leq x_1, \ldots, e_{t_n-k} \leq x_n]
\end{align*}
\]

Clearly, \(\mu_t = E(e_t) \) is constant, and \(\gamma_k = var(e_t) = \sigma_e^2 \) for \(k = 0 \) and zero for any \(k \neq 0 \).
Examples of Stationary and Nonstationary Processes

- The moving average process is another stationary process.
- The random walk process is not stationary. How can we see that?
- Its variance function is NOT constant, and its autocovariance function does NOT only depend on the time lag.
- What if we considered the differences of successive Y-values: $\nabla Y_t = Y_t - Y_{t-1}$?
- Since for the random walk, $\nabla Y_t = e_t$, or simply white noise, we see the differenced time series is stationary.
- This is common in practice: We can often transform nonstationary processes into stationary processes by differencing.