STAT 520: Forecasting and Time Series

David B. Hitchcock University of South Carolina Department of Statistics

 $4.171 +$

 $4.50 \times 4.70 \times 4.70 \times$

E

 $2Q$

- \blacktriangleright Time series data are collected sequentially over time.
- \triangleright Some common examples include:
	- 1. Meteorological data (temperatures, precipitation levels, etc.) taken daily or hourly
	- 2. Sales data taken annually
	- 3. Heart activity measured at each millisecond
- \blacktriangleright The major goals of time series analysis are: (1) to model the stochastic phenomenon that produces these data; and (2) to predict or forecast the future values of the time series.
- \triangleright A key aspect of time series data is that observations measured across time are typically dependent random variables, not independent r.v.'s.

イロメ イ何 トラ ミュース

Some Time Series Examples

- \triangleright See annual Los Angeles rainfall plot in R. There is substantial variation in rainfall amount across years.
- \triangleright Are consecutive years related? Can we predict a year's rainfall amount based on the previous year's amount?
- \triangleright Scatter plot of one year's rainfall against previous year's rainfall shows little association.
- \triangleright See color property value plot in R. Can we predict a batch's color property based on the previous batch's value?
- \triangleright Scatter plot of one batch's color value against previous batch's value shows some positive association.
- \triangleright See Canadian hare abundance plot in R. Can we predict a year's abundance based on the previous year's abundance?
- \triangleright Scatter plot of one year's abundance against previous year's abundance shows clear positive association.

イロメ イ押 トラ ミトラ ミチャ

Some Time Series Examples with Seasonality

- \triangleright See monthly Dubuque temperature plot in R. Notice the regular pattern.
- \blacktriangleright These data show seasonality: we see that observations that are 12 months apart are related.
- \blacktriangleright In the Dubuque data, each January temperature is low, while each July temperature is high.
- \triangleright A seasonal pattern is also seen in the monthly oil filter sales data.
- \triangleright Certain months regularly see high sales while other months regularly see low sales.

マーター マーティング

- \triangleright See Southern Oscillation Index (SOI) and Recruitment time series plots.
- \triangleright We may investigate how SOI and the fish population are related over time.
- \triangleright The fMRI time series plots show several similar time series taken under different experimental conditions.

A + + = + + = +

- \triangleright An observed time series can be modeled with a stochastic process: a sequence of random variables taken across time $\{Y_t, t = \ldots, -2, -1, 0, 1, 2, \ldots\}.$
- \blacktriangleright The probability structure of a stochastic process is determined by the set of all joint distributions of all finite sets of these r.v.'s.
- If these joint distributions are *multivariate normal*, it is simpler: Knowing the means, variances, and covariances of the Y_t 's tells us everything about the joint distributions.

A + + = + + = +

Moments (Means, Variances, Covariances)

 \blacktriangleright The mean function of a stochastic process $\{Y_t\}$

$$
\mu_t = E(Y_t) \text{ for all } t
$$

gives the expected value of the process at time t .

- \blacktriangleright μ_t could vary across time.
- \triangleright The autocovariance function is denoted:

$$
\gamma_{t,s} = \text{cov}(Y_t, Y_s) \text{ for } t, s
$$

where

$$
cov(Y_t, Y_s) = E[(Y_t - \mu_t)(Y_s - \mu_s)] = E(Y_t Y_s) - \mu_t \mu_s.
$$

 \blacktriangleright The autocorrelation function is denoted:

$$
\rho_{t,s} = \text{corr}(Y_t, Y_s) \text{ for } t,s
$$

whe[r](#page-6-0)e $\mathit{corr}(Y_t,Y_s)=\mathit{cov}(Y_t,Y_s)/[(\mathit{var}(Y_t)\mathit{var}(Y_s))^{1/2}].$ $\mathit{corr}(Y_t,Y_s)=\mathit{cov}(Y_t,Y_s)/[(\mathit{var}(Y_t)\mathit{var}(Y_s))^{1/2}].$

റെ ര

Interpreting Correlations and Covariances

- \triangleright Both autocovariance and autocorrelation measure the linear dependence between the process's values at two different times.
- \triangleright The autocorrelation is scaled to be between -1 and 1 and is easier to interpret.
- \triangleright Many time series processes have positive autocovariance and autocorrelation:
	- \blacktriangleright If $\gamma_{t,s}>0$, then: If Y_t is large (small), then Y_s tends to be large (small).
	- \blacktriangleright If $\gamma_{t,s} <$ 0, then: If Y_t is large, then Y_s tends to be small (and vice versa).

► Note $\gamma_{t,t} = \text{var}(Y_t) = E[(Y_t - \mu_t)^2] = E(Y_t^2) - \mu_t^2$.

 $AB = AB + AB +$

$$
cov\bigg[\sum_{i=1}^m c_i Y_{t_i}, \sum_{j=1}^n d_j Y_{s_j}\bigg] = \sum_{i=1}^m \sum_{j=1}^n c_i d_j cov(Y_{t_i}, Y_{s_j}).
$$

A special case of this result:

$$
var\bigg[\sum_{i=1}^n c_i Y_{t_i}\bigg] = \sum_{i=1}^n c_i^2 var(Y_{t_i}) + 2 \sum_{i=2}^n \sum_{j=1}^{i-1} c_i c_j cov(Y_{t_i}, Y_{t_j}).
$$

Hitchcock [STAT 520: Forecasting and Time Series](#page-0-0)

イロメ イ母メ イヨメ イヨメー

E

 299

Simple Example of Calculating a Correlation of Linear Combination of r.v.'s

- **Example:** Let Y_1 be a r.v. with $E(Y_1) = 0$ and var $(Y_1) = 4$ and Y_2 be a r.v. with $E(Y_2) = 0$ and var $(Y_2) = 9$, and let $cov(Y_1, Y_2) = 1.$
- Find corr $(2Y_1 + Y_2, 3Y_1 2Y_2)$.
- \triangleright To calculate the correlation between two random quantities: First calculate the covariance between the two quantities; then calculate the variance of each quantity; and then plug into the formula for correlation.

Continuation of of Calculating a Correlation

\blacktriangleright Covariance:

 \triangleright cov(2Y₁ + Y₂, 3Y₁ – 2Y₂) = $6cov(Y_1, Y_1) - 4cov(Y_1, Y_2) + 3cov(Y_2, Y_1) - 2cov(Y_2, Y_2) =$ $6(4) - 4(1) + 3(1) - 2(9) = 24 - 4 + 3 - 18 = 5.$

\blacktriangleright Variances:

- \triangleright var(2Y₁ + Y₂) = cov(2Y₁ + Y₂, 2Y₁ + Y₂) = $4var(Y_1) + 2cov(Y_1, Y_2) + 2cov(Y_2, Y_1) + var(Y_2) =$ $4(4) + 2(1) + 2(1) + 9 = 29.$
- \triangleright var(3Y₁ − 2Y₂) = cov(3Y₁ − 2Y₂, 3Y₁ − 2Y₂) = $9var(Y_1) - 6cov(Y_1, Y_2) - 6cov(Y_2, Y_1) + 4var(Y_2) =$ $9(4) - 6(1) - 6(1) + 4(9) = 60.$
- \blacktriangleright Formula for Correlation:
- \blacktriangleright corr $(2Y_1 + Y_2, 3Y_1 2Y_2) = 5/\sqrt{(29)(60)} \approx 0.12$.

イロメ イ押 レイチャ イチャー

 Ω

A simple time series process: The Random Walk

- In Let e_1, e_2, \ldots be a sequence of independent and identically distributed (iid) r.v.'s, each having mean 0 and variance $\sigma_{\sf e}^2$.
- \blacktriangleright Consider the time series:

$$
Y_1 = e_1 Y_2 = e_1 + e_2 \vdots Y_t = e_1 + e_2 + \dots + e_t
$$

In other words, $Y_t = Y_{t-1} + e_t$, where initially $Y_1 = e_1$.

 \blacktriangleright Then Y_t is the position on a number line (at time t) of a walker who is taking random (forward or backward) steps (of sizes e_1, e_2, \ldots, e_t) along the number line.

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is a set of \mathbb{R} is a set of \mathbb{R} is

For this random walk process, the mean function $\mu_t = 0$ for all t, since

$$
E(Y_t) = E(e_1 + e_2 + \cdots + e_t) = 0 + 0 + \cdots + 0 = 0
$$

and

$$
var(Y_t) = var(e_1 + e_2 + \cdots + e_t) = \sigma_e^2 + \sigma_e^2 + \cdots + \sigma_e^2 = t\sigma_e^2
$$

since all the e_i 's are independent.

 $4.171 +$

 $4.50 \times 4.70 \times 4.70 \times$

 $2Q$

Autocovariance Function of the Random Walk

$$
\blacktriangleright
$$
 For $1 \leq t \leq s$,

$$
\gamma_{t,s} = cov(Y_t, Y_s)
$$

= $cov(e_1 + e_2 + \cdots + e_t,$
 $e_1 + e_2 + \cdots + e_t + e_{t+1} + \cdots + e_s)$

From the formula for covariance of sums of r.v.'s, we have

$$
cov(Y_t, Y_s) = \sum_{i=1}^s \sum_{j=1}^t cov(e_i, e_j),
$$

but these covariance terms are zero except when $i = j$, so $cov(Y_t, Y_s) = t\sigma_e^2$, for $1 \le t \le s$.

A + + = + + = +

- \blacktriangleright The autocorrelation function is easily found to be $\sqrt{t/s}$, for $1 \leq t \leq s$.
- From this, note $corr(Y_1, Y_2) = \sqrt{1/2} = 0.707;$ $corr(Y_{24}, Y_{25}) = \sqrt{24/25} = 0.98;$ $corr(Y_1, Y_{25}) = \sqrt{1/25} = 0.20.$
- \triangleright Values close in time are more strongly correlated than values far apart in time.
- \triangleright And neighboring values later in the process are more strongly correlated than neighboring values early in the process.

A + + = + + = +

- In Let e_1, e_2, \ldots be a sequence of independent and identically distributed (iid) r.v.'s, each having mean 0 and variance $\sigma_{\sf e}^2$.
- \triangleright Consider the time series:

$$
Y_t = \frac{e_t + e_{t-1}}{2}.
$$

For this moving average process, the mean function $\mu_t = 0$ for all t, since $E(Y_t) = E[(e_t + e_{t-1})/2] = 0.5E[e_t + e_{t-1}] = 0$, and var(Y_t) = var[($e_t + e_{t-1}$)/2] = 0.25var[$e_t + e_{t-1}$] = $0.25 \times 2\sigma_e^2 = 0.5\sigma_e^2$ since all the e_i 's are independent.

A + + = + + = +

Autocovariance Function of the Moving Average

$$
cov(Y_t, Y_{t-1}) = cov\left(\frac{e_t + e_{t-1}}{2}, \frac{e_{t-1} + e_{t-2}}{2}\right)
$$

= 0.25[$cov(e_t, e_{t-1})$ + $cov(e_t, e_{t-2})$ +
 $cov(e_{t-1}, e_{t-1})$ + $cov(e_{t-1}, e_{t-2})$]
= 0.25[0 + 0 + $cov(e_{t-1}, e_{t-1})$ + 0] = 0.25 σ_e^2

 \blacktriangleright And

$$
cov(Y_t, Y_{t-2}) = cov\left(\frac{e_t + e_{t-1}}{2}, \frac{e_{t-2} + e_{t-3}}{2}\right) = 0,
$$

since there are no overlapping e terms here, and all the e_i 's are independent.

► Similarly, $cov(Y_t, Y_{t-k}) = 0$ for all $k > 1$.

 Ω

 \rightarrow \equiv \rightarrow

 \blacktriangleright From this, note

$$
\rho_{t,s} = \begin{cases} 1, \text{for} \; |t-s| = 0 \\ 0.5, \text{for} \; |t-s| = 1 \\ 0, \text{for} \; |t-s| > 1 \end{cases}
$$

- ► So $\rho_{t,t-1}$ is the same no matter what t is, and in fact, for any k, $\rho_{t,t-k}$ is the same no matter what t is.
- \blacktriangleright This is related to the concept of stationarity.

AD - 4 E - 4 E -

- If a process is stationary, this implies that the laws that govern the process do not change as time goes on.
- \triangleright A process is *strictly stationary* if the entire joint distribution of n values is the same as the joint distribution of any other n time-shifted values of the process, no matter when the two sequences start.
- \triangleright For example, with a stationary process, the joint distribution of Y_1, Y_3, Y_4 would be the same as the joint distribution of Y_6, Y_8, Y_9 , and similarly for any such pairs of sequences.

 $A \cap B$ is a $B \cap B$ is a $B \cap B$

- ► Note that with a stationary process: $E(Y_t) = E(Y_{t-k})$ for all t and k , so this implies that the mean function of any stationary process is *constant* over time.
- ► Also, with a stationary process: $var(Y_t) = var(Y_{t-k})$ for all t and k , so the variance function of any stationary process is constant over time.
- \triangleright Note: A function that is constant over time is one that does not depend on t.

∽≏ເ

More on Stationarity

- \triangleright Also, if the process is stationary, the bivariate distribution of (Y_t, Y_s) is the same as the bivariate distribution of (Y_{t-k}, Y_{s-k}) for all t, s, k.
- ► So $cov(Y_t, Y_s) = cov(Y_{t-k}, Y_{s-k})$ for all t, s, k .
- ► Letting $k = s$, we have $cov(Y_t, Y_s) = cov(Y_{t-s}, Y_0)$; letting $k = t$, we have $cov(Y_t, Y_s) = cov(Y_0, Y_{s-t})$.
- ► So $cov(Y_t, Y_s) = cov(Y_0, Y_{|t-s|}).$
- \triangleright So for a stationary process, the covariance between any two values depends only on the *lag* in time between the values, not on the actual times t and s .
- \blacktriangleright For a stationary process, we can express our autocovariance and autocorrelation functions simply in terms of the time lag k:

$$
\gamma_k = \text{cov}(Y_t, Y_{t-k}) \text{ and } \rho_k = \text{corr}(Y_t, Y_{t-k}).
$$

メタト メミト メミト

- \triangleright A process is weakly stationary or second-order stationary if
	- 1. The mean function is constant over time, and
	- 2. $\gamma_{t,t-k} = \gamma_{0,k}$ for every time t and lag k
- \triangleright Any process that is strictly stationary is also weakly stationary.
- \triangleright But a process could be weakly stationary and NOT strictly stationary.
- \blacktriangleright In the special case that all joint distributions for the process are multivariate normal, then being weakly stationary is equivalent to being strictly stationary.

- オート オート オート

- \blacktriangleright The white noise process is a simple example of a stationary process.
- \triangleright White noise is simply a sequence of iid r.v.'s $\{e_t\}$.
- \triangleright White noise is strictly stationary since

$$
P[e_{t_1} \leq x_1, \ldots, e_{t_n} \leq x_n]
$$
\n
$$
= P[e_{t_1} \leq x_1] \cdots P[e_{t_n} \leq x_n]
$$
\n
$$
= P[e_{t_1-k} \leq x_1] \cdots P[e_{t_n-k} \leq x_n]
$$
\n
$$
= P[e_{t_1-k} \leq x_1, \ldots, e_{t_n-k} \leq x_n]
$$

► Clearly, $\mu_t = E(e_t)$ is constant, and $\gamma_k = \text{var}(e_t) = \sigma_e^2$ for $k = 0$ and zero for any $k \neq 0$.

イタン イラン イラント

 Ω

Examples of Stationary and Nonstationary Processes

- \blacktriangleright The moving average process is another stationary process.
- \blacktriangleright The random walk process is not stationary. How can we see that?
- Its variance function is NOT constant, and its autocovariance function does NOT only depend on the time lag.
- \triangleright What if we considered the *differences* of successive Y-values: $\nabla Y_t = Y_t - Y_{t-1}$?
- ► Since for the random walk, $\nabla Y_t = e_t$, or simply white noise, we see the differenced time series is stationary.
- \blacktriangleright This is common in practice: We can often transform nonstationary processes into stationary processes by differencing.

マーティ ミュース ミュ