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What are Time Series Data?

I Time series data are collected sequentially over time.
I Some common examples include:

1. Meteorological data (temperatures, precipitation levels, etc.)
taken daily or hourly

2. Sales data taken annually
3. Heart activity measured at each millisecond

I The major goals of time series analysis are: (1) to model the
stochastic phenomenon that produces these data; and (2) to
predict or forecast the future values of the time series.

I A key aspect of time series data is that observations measured
across time are typically dependent random variables, not
independent r.v.’s.
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Some Time Series Examples

I See annual Los Angeles rainfall plot in R. There is substantial
variation in rainfall amount across years.

I Are consecutive years related? Can we predict a year’s rainfall
amount based on the previous year’s amount?

I Scatter plot of one year’s rainfall against previous year’s
rainfall shows little association.

I See color property value plot in R. Can we predict a batch’s
color property based on the previous batch’s value?

I Scatter plot of one batch’s color value against previous
batch’s value shows some positive association.

I See Canadian hare abundance plot in R. Can we predict a
year’s abundance based on the previous year’s abundance?

I Scatter plot of one year’s abundance against previous year’s
abundance shows clear positive association.
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Some Time Series Examples with Seasonality

I See monthly Dubuque temperature plot in R. Notice the
regular pattern.

I These data show seasonality: we see that observations that
are 12 months apart are related.

I In the Dubuque data, each January temperature is low, while
each July temperature is high.

I A seasonal pattern is also seen in the monthly oil filter sales
data.

I Certain months regularly see high sales while other months
regularly see low sales.
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Some Examples with Multiple Time Series

I See Southern Oscillation Index (SOI) and Recruitment time
series plots.

I We may investigate how SOI and the fish population are
related over time.

I The fMRI time series plots show several similar time series
taken under different experimental conditions.
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Chapter 2: Fundamental Mathematical Concepts

I An observed time series can be modeled with a stochastic
process: a sequence of random variables taken across time
{Yt , t = . . . ,−2,−1, 0, 1, 2, . . .}.

I The probability structure of a stochastic process is determined
by the set of all joint distributions of all finite sets of these
r.v.’s.

I If these joint distributions are multivariate normal, it is
simpler: Knowing the means, variances, and covariances of
the Yt ’s tells us everything about the joint distributions.
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Moments (Means, Variances, Covariances)

I The mean function of a stochastic process {Yt}

µt = E (Yt) for all t

gives the expected value of the process at time t.

I µt could vary across time.

I The autocovariance function is denoted:

γt,s = cov(Yt ,Ys) for t, s

where
cov(Yt ,Ys) = E [(Yt − µt)(Ys − µs)] = E (YtYs)− µtµs .

I The autocorrelation function is denoted:

ρt,s = corr(Yt ,Ys) for t, s

where corr(Yt ,Ys) = cov(Yt ,Ys)/[(var(Yt)var(Ys))1/2].
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Interpreting Correlations and Covariances

I Both autocovariance and autocorrelation measure the linear
dependence between the process’s values at two different
times.

I The autocorrelation is scaled to be between -1 and 1 and is
easier to interpret.

I Many time series processes have positive autocovariance and
autocorrelation:

I If γt,s > 0, then: If Yt is large (small), then Ys tends to be
large (small).

I If γt,s < 0, then: If Yt is large, then Ys tends to be small (and
vice versa).

I Note γt,t = var(Yt) = E [(Yt − µt)2] = E (Y 2
t )− µ2t .
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Important Results

cov

[ m∑
i=1

ciYti ,

n∑
j=1

djYsj

]
=

m∑
i=1

n∑
j=1

cidjcov(Yti ,Ysj ).

A special case of this result:

var

[ n∑
i=1

ciYti

]
=

n∑
i=1

c2i var(Yti ) + 2
n∑

i=2

i−1∑
j=1

cicjcov(Yti ,Ytj ).
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Simple Example of Calculating a Correlation of Linear
Combination of r.v.’s

I Example: Let Y1 be a r.v. with E (Y1) = 0 and var(Y1) = 4
and Y2 be a r.v. with E (Y2) = 0 and var(Y2) = 9, and let
cov(Y1,Y2) = 1.

I Find corr(2Y1 + Y2, 3Y1 − 2Y2).

I To calculate the correlation between two random quantities:
First calculate the covariance between the two quantities;
then calculate the variance of each quantity; and then plug
into the formula for correlation.
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Continuation of of Calculating a Correlation

I Covariance:

I cov(2Y1 + Y2, 3Y1 − 2Y2) =
6cov(Y1,Y1)− 4cov(Y1,Y2) + 3cov(Y2,Y1)− 2cov(Y2,Y2) =
6(4)− 4(1) + 3(1)− 2(9) = 24− 4 + 3− 18 = 5.

I Variances:

I var(2Y1 + Y2) = cov(2Y1 + Y2, 2Y1 + Y2) =
4var(Y1) + 2cov(Y1,Y2) + 2cov(Y2,Y1) + var(Y2) =
4(4) + 2(1) + 2(1) + 9 = 29.

I var(3Y1 − 2Y2) = cov(3Y1 − 2Y2, 3Y1 − 2Y2) =
9var(Y1)− 6cov(Y1,Y2)− 6cov(Y2,Y1) + 4var(Y2) =
9(4)− 6(1)− 6(1) + 4(9) = 60.

I Formula for Correlation:

I corr(2Y1 + Y2, 3Y1 − 2Y2) = 5/
√

(29)(60) ≈ 0.12.
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A simple time series process: The Random Walk

I Let e1, e2, . . . be a sequence of independent and identically
distributed (iid) r.v.’s, each having mean 0 and variance σ2e .

I Consider the time series:

Y1 = e1

Y2 = e1 + e2
...

Yt = e1 + e2 + · · ·+ et

I In other words, Yt = Yt−1 + et , where initially Y1 = e1.

I Then Yt is the position on a number line (at time t) of a
walker who is taking random (forward or backward) steps (of
sizes e1, e2, . . . , et) along the number line.
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Properties of the Random Walk

I For this random walk process, the mean function µt = 0 for
all t, since

E (Yt) = E (e1 + e2 + · · ·+ et) = 0 + 0 + · · ·+ 0 = 0

and

var(Yt) = var(e1 + e2 + · · ·+ et) = σ2e + σ2e + · · ·+ σ2e = tσ2e

since all the ei ’s are independent.
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Autocovariance Function of the Random Walk

I For 1 ≤ t ≤ s,

γt,s = cov(Yt ,Ys)

= cov(e1 + e2 + · · ·+ et ,

e1 + e2 + · · ·+ et + et+1 + · · ·+ es)

I From the formula for covariance of sums of r.v.’s, we have

cov(Yt ,Ys) =
s∑

i=1

t∑
j=1

cov(ei , ej),

but these covariance terms are zero except when i = j , so
cov(Yt ,Ys) = tσ2e , for 1 ≤ t ≤ s.
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Autocorrelation Function of the Random Walk

I The autocorrelation function is easily found to be
√
t/s, for

1 ≤ t ≤ s.

I From this, note corr(Y1,Y2) =
√

1/2 = 0.707;
corr(Y24,Y25) =

√
24/25 = 0.98;

corr(Y1,Y25) =
√

1/25 = 0.20.

I Values close in time are more strongly correlated than values
far apart in time.

I And neighboring values later in the process are more strongly
correlated than neighboring values early in the process.
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A Simple Moving Average Process

I Let e1, e2, . . . be a sequence of independent and identically
distributed (iid) r.v.’s, each having mean 0 and variance σ2e .

I Consider the time series:

Yt =
et + et−1

2
.

I For this moving average process, the mean function µt = 0 for
all t, since E (Yt) = E [(et + et−1)/2] = 0.5E [et + et−1] = 0,
and var(Yt) = var [(et + et−1)/2] = 0.25var [et + et−1] =
0.25× 2σ2e = 0.5σ2e since all the ei ’s are independent.
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Autocovariance Function of the Moving Average

cov(Yt ,Yt−1) = cov

(
et + et−1

2
,
et−1 + et−2

2

)
= 0.25[cov(et , et−1) + cov(et , et−2) +

cov(et−1, et−1) + cov(et−1, et−2)]

= 0.25[0 + 0 + cov(et−1, et−1) + 0] = 0.25σ2e

I And

cov(Yt ,Yt−2) = cov

(
et + et−1

2
,
et−2 + et−3

2

)
= 0,

since there are no overlapping e terms here, and all the ei ’s
are independent.

I Similarly, cov(Yt ,Yt−k) = 0 for all k > 1.
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Autocorrelation Function of the Moving Average

I From this, note

ρt,s =


1, for |t − s| = 0

0.5, for |t − s| = 1

0, for |t − s| > 1

I So ρt,t−1 is the same no matter what t is, and in fact, for any
k, ρt,t−k is the same no matter what t is.

I This is related to the concept of stationarity.
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Stationarity

I If a process is stationary, this implies that the laws that
govern the process do not change as time goes on.

I A process is strictly stationary if the entire joint distribution of
n values is the same as the joint distribution of any other n
time-shifted values of the process, no matter when the two
sequences start.

I For example, with a stationary process, the joint distribution
of Y1,Y3,Y4 would be the same as the joint distribution of
Y6,Y8,Y9, and similarly for any such pairs of sequences.
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Properties of Stationarity Processes

I Note that with a stationary process: E (Yt) = E (Yt−k) for all
t and k , so this implies that the mean function of any
stationary process is constant over time.

I Also, with a stationary process: var(Yt) = var(Yt−k) for all t
and k , so the variance function of any stationary process is
constant over time.

I Note: A function that is constant over time is one that does
not depend on t.
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More on Stationarity

I Also, if the process is stationary, the bivariate distribution of
(Yt ,Ys) is the same as the bivariate distribution of
(Yt−k ,Ys−k) for all t, s, k.

I So cov(Yt ,Ys) = cov(Yt−k ,Ys−k) for all t, s, k .

I Letting k = s, we have cov(Yt ,Ys) = cov(Yt−s ,Y0); letting
k = t, we have cov(Yt ,Ys) = cov(Y0,Ys−t).

I So cov(Yt ,Ys) = cov(Y0,Y|t−s|).

I So for a stationary process, the covariance between any two
values depends only on the lag in time between the values,
not on the actual times t and s.

I For a stationary process, we can express our autocovariance
and autocorrelation functions simply in terms of the time lag
k:
γk = cov(Yt ,Yt−k) and ρk = corr(Yt ,Yt−k).
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Weak Stationarity

I A process is weakly stationary or second-order stationary if

1. The mean function is constant over time, and
2. γt,t−k = γ0,k for every time t and lag k

I Any process that is strictly stationary is also weakly stationary.

I But a process could be weakly stationary and NOT strictly
stationary.

I In the special case that all joint distributions for the process
are multivariate normal, then being weakly stationary is
equivalent to being strictly stationary.

Hitchcock STAT 520: Forecasting and Time Series



White Noise

I The white noise process is a simple example of a stationary
process.

I White noise is simply a sequence of iid r.v.’s {et}.
I White noise is strictly stationary since

P[et1 ≤ x1, . . . , etn ≤ xn]

= P[et1 ≤ x1] · · ·P[etn ≤ xn]

= P[et1−k ≤ x1] · · ·P[etn−k ≤ xn]

= P[et1−k ≤ x1, . . . , etn−k ≤ xn]

I Clearly, µt = E (et) is constant, and γk = var(et) = σ2e for
k = 0 and zero for any k 6= 0.
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Examples of Stationary and Nonstationary Processes

I The moving average process is another stationary process.

I The random walk process is not stationary. How can we see
that?

I Its variance function is NOT constant, and its autocovariance
function does NOT only depend on the time lag.

I What if we considered the differences of successive Y-values:
∇Yt = Yt − Yt−1?

I Since for the random walk, ∇Yt = et , or simply white noise,
we see the differenced time series is stationary.

I This is common in practice: We can often transform
nonstationary processes into stationary processes by
differencing.
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