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What are Time Series Data?

Time series data are collected sequentially over time.

v

» Some common examples include:
1. Meteorological data (temperatures, precipitation levels, etc.)
taken daily or hourly
2. Sales data taken annually
3. Heart activity measured at each millisecond
» The major goals of time series analysis are: (1) to model the
stochastic phenomenon that produces these data; and (2) to
predict or forecast the future values of the time series.

> A key aspect of time series data is that observations measured
across time are typically dependent random variables, not
independent r.v.'s.
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Some Time Series Examples

> See annual Los Angeles rainfall plot in R. There is substantial
variation in rainfall amount across years.

> Are consecutive years related? Can we predict a year's rainfall
amount based on the previous year's amount?

» Scatter plot of one year’s rainfall against previous year's
rainfall shows little association.

» See color property value plot in R. Can we predict a batch's
color property based on the previous batch’s value?

» Scatter plot of one batch’s color value against previous
batch’s value shows some positive association.

» See Canadian hare abundance plot in R. Can we predict a
year's abundance based on the previous year's abundance?

» Scatter plot of one year's abundance against previous year's
abundance shows clear positive association.
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Some Time Series Examples with Seasonality

» See monthly Dubuque temperature plot in R. Notice the
regular pattern.

» These data show seasonality: we see that observations that
are 12 months apart are related.

» In the Dubuque data, each January temperature is low, while
each July temperature is high.

> A seasonal pattern is also seen in the monthly oil filter sales
data.

» Certain months regularly see high sales while other months
regularly see low sales.
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Some Examples with Multiple Time Series

» See Southern Oscillation Index (SOI) and Recruitment time
series plots.

» We may investigate how SOI and the fish population are
related over time.

» The fMRI time series plots show several similar time series
taken under different experimental conditions.
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Chapter 2: Fundamental Mathematical Concepts

» An observed time series can be modeled with a stochastic
process: a sequence of random variables taken across time
{Ye,t=...,-2,-1,0,1,2,...}.

» The probability structure of a stochastic process is determined

by the set of all joint distributions of all finite sets of these
r.v.'s.

> If these joint distributions are multivariate normal, it is
simpler: Knowing the means, variances, and covariances of
the Y;'s tells us everything about the joint distributions.
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Moments (Means, Variances, Covariances)

» The mean function of a stochastic process {Y;}
pe = E(Yt) for all t

gives the expected value of the process at time t.
> u; could vary across time.
» The autocovariance function is denoted:

Yt,s = cov(Ys, Ys) for t, s

where
cov(Y, Ys) = E[(Ye — pe)(Ys — ps)] = E(Y2Ys) — piepis.
» The autocorrelation function is denoted:

pts = corr( Yy, Ys) for t,s
where corr(Y:, Ys) = cov(Ys, Ys)/[(var(Ye)var(Ys)) 2.



Interpreting Correlations and Covariances

» Both autocovariance and autocorrelation measure the linear
dependence between the process’s values at two different
times.

» The autocorrelation is scaled to be between -1 and 1 and is
easier to interpret.
» Many time series processes have positive autocovariance and
autocorrelation:
> If v:s > 0, then: If Y; is large (small), then Y; tends to be
large (small).
» If v:s <0, then: If Y; is large, then Y; tends to be small (and
vice versa).

> Note e, = var(Y:) = E[(Ye — ue)’] = E(Y?) — 7.
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Important Results

n

cov [z’”: i Y, Zn: d; Ysj} Zm: cidjcov( Yy, Ys;)-
i=1 i=1

A special case of this result:

var[ic;Yti] Zc var(Yy,) +2i2c,cjcov (Y, Y-
i=1

i=2 j=1
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Simple Example of Calculating a Correlation of Linear

Combination of r.v.'s

» Example: Let Y7 be a r.v. with E(Y1) =0 and var(Y1) =4
and Yz be a r.v. with E(Y2) =0 and var(Y2) =9, and let
cov(Yy, Y2) =1

» Find corr(2Y1 + Y2,3Y1 — 2Y%).

» To calculate the correlation between two random quantities:
First calculate the covariance between the two quantities;
then calculate the variance of each quantity; and then plug
into the formula for correlation.
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Continuation of of Calculating a Correlation

» Covariance:

> COV(2Y1 + Y5,3Y; — 2Y2) =
6COV( Y1, Yl) — 4COV(Y1, Y2) -|-3COV( Yo, Yl) — 2COV(Y2, Y2) =
6(4) — 4(1) +3(1) —2(9) =24 —4+3—-18 =5.

» Variances:

> V3I‘(2Y1 + Yg) = COV(2Y1 + Y5,2Y7 + Y2) =
4var(Y1) + 2cov(Y1, Y2) + 2cov( Yo, Y1) + var(Y2) =
4(4)+2(1) +2(1) +9=29.

> var(3Y1 — 2Y2) = COV(3Y1 — 2Y2,3Y1 — 2Y2) =
9var(Y1) — 6cov(Yi, Ya2) — 6cov(Ya, Y1) + dvar(Ys) =
9(4) — 6(1) — 6(1) + 4(9) = 60.

» Formula for Correlation:

» corr(2Y1 + Y2,3Y1 —2Y2) =5/4/(29)(60) ~ 0.12.
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A simple time series process: The Random Walk

> Let e, e,... be a sequence of independent and identically

distributed (iid) r.v.'s, each having mean 0 and variance o2.

» Consider the time series:

Yi = @
Yo = e+e
Yo = atet--te

> In other words, Y; = Y:_1 + e, where initially Y7 = ey.

» Then Y; is the position on a number line (at time t) of a
walker who is taking random (forward or backward) steps (of
sizes e, €,. .., e:) along the number line.
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Properties of the Random Walk

» For this random walk process, the mean function p; = 0 for
all t, since

E(Vi)=E(er+e+---+e)=04+0+---40=0
and
2 2

var(Yt)zvar(el+ez+~-~+et):U§+Ug+“‘+0e:we

since all the e;'s are independent.
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Autocovariance Function of the Random Walk

» For1 <t <s,

Ytis = COV(Yh Ys)
= cov(er+ e+ -+ e,
ert+e+--tete1+-+es)

» From the formula for covariance of sums of r.v.’s, we have
s ot
cov(Ys, Ys) = E E cov(ej, &),
i=1 j=1

but these covariance terms are zero except when i = j, so
cov(Ye, Ys) = to?, for 1 < t <s.
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Autocorrelation Function of the Random Walk

» The autocorrelation function is easily found to be /t/s, for
1<t<s.

» From this, note corr(Y1, Y2) = +/1/2 = 0.707;
corr(Y24, Y25) = 4/ 24/25 = 0.98;
corr(Y1, Yos) = /1/25 = 0.20.

> Values close in time are more strongly correlated than values
far apart in time.

» And neighboring values later in the process are more strongly
correlated than neighboring values early in the process.

Hitchcock STAT 520: Forecasting and Time Series



A Simple Moving Average Process

> Let e, e,... be a sequence of independent and identically

distributed (iid) r.v.'s, each having mean 0 and variance o2.

» Consider the time series:

e+ er—1

Yt: 2

> For this moving average process, the mean function p; = 0 for
all t, since E(Y:) = E[(er + et—1)/2] = 0.5E[er + €;-1] =0,
and var(Y;) = var[(e: + er—1)/2] = 0.25var[e: + er—1] =
0.25 x 202 = 0.502 since all the ¢;s are independent.
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Autocovariance Function of the Moving Average

e+ e_1 er_ €r_
cov(Ye, Yeo1) = Cov< t + -1 €1+ t2>

2 ’ 2

= 0.25[cov(et, er—1) + cov(et, er—2) +
cov(er—1,er—1) + cov(er—1, er—2)]

= 0.25[0 + 0+ cov(er_1,e:1) + 0] = 0.2502

» And

cov(Ye, Ye_o) = COV(Et +er—1 e o+ et—3> _o,

2 ’ 2

since there are no overlapping e terms here, and all the ¢;'s
are independent.

» Similarly, cov(Y:, Yi—k) =0 for all k> 1.



Autocorrelation Function of the Moving Average

» From this, note

1,for [t—s|=0
pts = § 0.5, for [t —s| =1
0,for [t —s| >1

> S0 pt,t—1 is the same no matter what ¢ is, and in fact, for any
k, pt,t—k is the same no matter what t is.

» This is related to the concept of stationarity.
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Stationarity

> If a process is stationary, this implies that the laws that
govern the process do not change as time goes on.

> A process is strictly stationary if the entire joint distribution of
n values is the same as the joint distribution of any other n
time-shifted values of the process, no matter when the two
sequences start.

» For example, with a stationary process, the joint distribution
of Y1, Y3, Y4 would be the same as the joint distribution of
Ys, Ys, Yo, and similarly for any such pairs of sequences.
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Properties of Stationarity Processes

> Note that with a stationary process: E(Y:) = E(Y;_x) for all
t and k, so this implies that the mean function of any
stationary process is constant over time.

» Also, with a stationary process: var(Y;) = var(Y;_x) for all t
and k, so the variance function of any stationary process is
constant over time.

» Note: A function that is constant over time is one that does
not depend on t.
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More on Stationarity

» Also, if the process is stationary, the bivariate distribution of
(Yt, Ys) is the same as the bivariate distribution of
(Yi—k, Ys—k) for all t,s, k.

» So cov(Ys:, Ys) = cov(Yi—k, Ys—k) for all t,s, k.

» Letting k = s, we have cov(Y:, Ys) = cov(Yi—s, Yo); letting
k = t, we have cov(Y:, Ys) = cov(Yo, Ys_t).

> So cov(Y:, Ys) = cov(Yo, Ye—s))-

» So for a stationary process, the covariance between any two

values depends only on the /ag in time between the values,
not on the actual times t and s.

» For a stationary process, we can express our autocovariance

and autocorrelation functions simply in terms of the time lag
k:
vk = cov(Ye, Ye—k) and px = corr(Ye, Yi—k).
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Weak Stationarity

v

A process is weakly stationary or second-order stationary if

1. The mean function is constant over time, and
2. Vt,t—k = Yo,k for every time t and lag k

> Any process that is strictly stationary is also weakly stationary.

» But a process could be weakly stationary and NOT strictly
stationary.

» In the special case that all joint distributions for the process
are multivariate normal, then being weakly stationary is
equivalent to being strictly stationary.
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» The white noise process is a simple example of a stationary
process.
» White noise is simply a sequence of iid r.v.'s {e;}.
» White noise is strictly stationary since
Plet, <1, e, < ]

= P[etl SXl]"'P[et,, SXn]

= Pley—« <xi]--- Plet,—k < xa]

= Pley—k < xt,..., €,k < Xp]
» Clearly, iy = E(e;) is constant, and 7 = var(e;) = o2 for

k = 0 and zero for any k # 0.
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Examples of Stationary and Nonstationary Processes

» The moving average process is another stationary process.

» The random walk process is not stationary. How can we see
that?

» lts variance function is NOT constant, and its autocovariance
function does NOT only depend on the time lag.

» What if we considered the differences of successive Y-values:
VY:=VY:— Yi1?

» Since for the random walk, VY; = &, or simply white noise,
we see the differenced time series is stationary.

» This is common in practice: We can often transform

nonstationary processes into stationary processes by
differencing.
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