
Chapter 3: Regression Methods for Trends

I Time series exhibiting trends over time have a mean function
that is some simple function (not necessarily constant) of
time.

I The example random walk graph from Chapter 2 showed an
upward trend, but we know that a random walk process has
constant mean zero.

I That upward trend was simply a characteristic of that one
random realization of the random walk.

I If we generated other realizations of the random walk process,
they would exhibit different “trends”.

I Such “trends” could be called stochastic trends, since they are
just random and not fundamental to the underlying process.
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Deterministic Trends

I The more important type of trend is a deterministic trend,
which is related to the real nature of the process.

I Example: The plot of Dubuque temperature over time shows
a periodic seasonal trend that reflects how the location is
oriented to the sun across the seasons.

I In other examples, the trend in the time series might be linear
or quadratic or some other function.

I Often a time series process consists of some specified trend,
plus a random component.

I We commonly express such time series models using the form
Yt = µt + Xt , where µt is a trend and Xt is a random process
with mean zero for all t.
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Estimation of a Constant Mean

I Consider a time series with a constant mean function, i.e.,
Yt = µ+ Xt .

I The usual estimate of µ is the sample mean

Ȳ =
1

n

n∑
t=1

Yt

I This is an unbiased estimator of µ and it has variance

var(Ȳ ) =
γ0
n

[
1 + 2

n−1∑
k=1

(1− k/n)ρk

]
I If Xt is white noise (ρk = 0, i.e., zero autocorrelation), then

var(Ȳ ) simply equals γ0/n, the familiar “population variance
divided by the sample size.”
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Precision of Sample Mean

I In general, negative autocorrelation implies the sample mean
will have smaller variance (greater precision).

I Positive autocorrelation implies the sample mean will have
larger variance (worse precision).

I In other cases, some ρk ’s are positive and some are negative.

I In many stationary processes, the autocorrelation decays
toward zero quickly as the lag increases so that

∞∑
k=0

|ρk | <∞.
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More on the Precision of the Sample Mean

I If ρk = φ|k| for some −1 < φ < 1, then by summing a
geometric series and using a large-sample result:

var(Ȳ ) ≈

(
1 + φ

1− φ

)
γ0
n

I For nonstationary random processes, the variance of Ȳ can be
undesirable.

I For example, if Xt is a random walk process, then var(Ȳ )
increases as n increases, which is not good! We would need to
estimate µ in some other way in this case.

Hitchcock STAT 520: Forecasting and Time Series



Regression Methods

I Now we consider several common nonconstant mean trend
models: linear, quadratic, seasonal means, and cosine trends.

I A linear trend is expressed as:

µt = β0 + β1t

I The least squares method chooses the estimates β̂0 and β̂1
that minimize the least squares criterion:

Q(β0, β1) =
n∑

t=1

[Yt − (β0 + β1t)]2

I The resulting estimates have the familiar formulas in equation
(3.3.2) on page 30, and can be found easily using software
(see R examples on simulated random walk data).
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Other Regression Methods

I A quadratic trend is expressed as:

µt = β0 + β1t + β2t
2

I The least squares method minimizes the least squares
criterion:

Q(β0, β1, β2) =
n∑

t=1

[Yt − (β0 + β1t + β2t
2)]2

I Before fitting a linear (or quadratic) model, it is important to
ensure that this trend truly represents the deterministic nature
of the time series process and is not simply an artifact of the
randomness of that realization of the process (random walk
example).
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Cyclical or Seasonal Trends

I The seasonal means approach represents the mean function
with a different parameter for each level.

I For example, suppose each measured time is a different
month, and we have observed data over a period of several
years.

I The seasonal means model might specify a different mean
response for each of the 12 months:

µt =


β1 for t = 1, 13, 25, . . .

β2 for t = 2, 14, 26, . . .
...

β12 for t = 12, 24, 36, . . .

I This is similar to an ANOVA model in which the parameters
are the mean response values for each factor level.
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Details of Seasonal Means Model

I The model as presented on the previous slide does not contain
an intercept, and that fact needs to be specified in the fitting
software.

I See R example for the model fit on the Dubuque temperature
data.

I An alternative formulation does include an intercept and
omits one of the β’s in the previous model.

I The parameters are interpreted differently in that model
formulation (see Dubuque temperature example).
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Harmonic Regression for Cosine Trends

I The seasonal means model makes no assumption about the
shape of the mean response function over time.

I A more specific model might assume that the mean response
varies over time in some regular manner.

I For example, a model for temperature data might assume
mean temperatures across time rise and fall in a periodic
pattern, such as:

µt = β cos(2πft + φ),

where β is the amplitude, f the frequency, and φ the phase.
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Fitting a Harmonic Regression Model

I To fit the model, it is useful to consider a transformation of
the mean response function:

µt = β1 cos(2πft) + β2 sin(2πft),

where β =
√
β21 + β22 and φ = arctan(−β2/β1).

I Then β1 and β2 enter the regression equation linearly and we
can estimate them using linear regression with cos(2πft) and
sin(2πft) as predictors, along with an intercept term:

µt = β0 + β1 cos(2πft) + β2 sin(2πft),
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Meanings of the Parameters

I The amplitude β is the height of the cosine curve from its
midpoint to its top.

I The frequency f is the reciprocal of the period, which
measures how often the curve’s pattern repeats itself.

I For monthly data having t = 1, 2, . . . , 12, . . ., the period is 12
and the frequency f = 1/12.

I If the data are monthly but time is measured in years, e.g.,
t = 2016, 2016.0833, 2016.1667, etc., then the period is 1 and
f would be 1 in this case.

I See R example on the Dubuque temperature data.

I Note that we can add more harmonic terms to the regression
equation to create a more complicated mean response
function, which will have more parameters, but which may
improve the fit.
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Properties of the Least Squares Estimators

I Section 3.4 gives some theoretical results about the variance
of the least squares estimators.

I When the random component {Xt} is not white noise, the
least squares estimators are not the Best Linear Unbiased
Estimators (BLUEs).

I However, under some general conditions on the random
component {Xt}, it is known that if the trend over time is
either:
I polynomial
I a trigonometric polynomial
I seasonal means
I any linear combination of these

then the least squares estimates of the trend coefficients have
approximately the same variance as the BLUEs, for large
sample sizes.
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Regression Output from Software

I The previously stated theoretical results imply some trust in
the least squares method, at least for some types of trend, but
the standard errors we obtain from software may still be
incorrect (for moderate sample sizes) if the random
component is not white noise.

I The R output gives us least squares estimates of the unknown
parameters.

I It also gives the residual standard deviation, which estimates√
γ0, the standard deviation of {Xt}:

s =

√√√√ 1

n − p

n∑
t=1

(Yt − µ̂t)2,

where µ̂t is the trend with the parameter estimates plugged
in, and p is the number of parameters estimated in µt .

I The smaller s, the better the fit, so the value of s can be used
to compare alternative trend models.
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More Regression Output from Software

I The coefficient of determination R2 is the proportion of
variation in the time series that is explained by the estimated
trend.

I An adjusted R2 measure is similar, but penalizes models with
more parameters.

I Like s, the adjusted R2 can be used to compare different
trend models; a higher adjusted R2 indicates a better model.

I R also produces estimated standard errors of the coefficient
estimates, but these are only valid when the random
component is white noise.
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More Model Selection Criteria

I The Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are other model selection criteria
(similar to adjusted R2).

I They are smaller for better fitting models, but they also
penalize models with more parameters.

I See R examples for displaying AIC and BIC.

I One model selection strategy is to pick the model with the
smallest AIC (or smallest BIC).
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Caution About Model Selection Criteria

I The AIC and BIC are likelihood-based model selection
criteria.

I It only makes sense to compare two models via AIC or BIC if
the dependent variable is exactly the same for both models.

I For example, you should not use AIC or BIC to compare a
model whose response variable is price to another model
whose response variable is the logarithm of price (apples and
oranges; completely different likelihood functions).

I We will see approaches to determine whether the response
variable should enter the model in a transformed manner, but
this should not be determined using AIC or BIC.
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Residual Analysis

I For any observation at time t, the residual X̂t = Yt − µ̂t serves
as a prediction of the unobserved stochastic component.

I It can be used to assess the true nature of Xt , for example,
does Xt behave like white noise?

I We can plot the residuals (often standardized) against time
and look for any patterns that might deviate from white noise.

I We can also plot the residuals against the fitted trend values
µ̂t and look for patterns.

I For example, does the variation in residuals change as the
fitted trend values change?

I If we see notable patterns in the plots, we may rethink
whether our model assumptions are appropriate.

I See examples with Dubuque temperature data.
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More Residual Analysis

I We can examine whether the residuals appear normally
distributed using a histogram, or, even better, a normal Q-Q
plot of the (standardized) residuals.

I A roughly straight-line pattern in the Q-Q plot is evidence
that the assumption of a normally distributed stochastic
component is reasonable.

I The Shapiro-Wilk test is a formal test for normality.

I The null hypothesis is that the stochastic component is
normal. We would doubt this normality assumption only if the
Shapiro-Wilk p-value were small, say less than 0.05.
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Assessing Independence

I The runs test on the residuals is one way to test whether the
stochastic component is independent across time.

I A run is a sequence of one or more residuals that are each
above (or below) the overall median residual.

I If there are many runs, this indicates excessive alternation
back and forth across the median, a sign of negative
autocorrelation.

I Very few runs indicates large residuals tend to be followed by
large residuals, and negative residuals by negative – a sign of
positive autocorrelation.

I The null hypothesis of the runs test is that there is
independence – a small p-value would show evidence against
this independence (either based on a very small or very large
number of runs).

I See example of runs test with Dubuque data.
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Sample autocorrelation function

I The sample autocorrelation function rk is an estimate of the
autocorrelation ρk between values separated by lag of size k :

rk =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=1(Yt − Ȳ )2
(1)

I A correlogram is a plot of rk against k which can be used to
assess dependence over time.

I The acf function in R produces the sample autocorrelation
function for each lag k , along with dashed horizontal lines at
plus/minus two standard errors (±2/

√
n).

I If the process follows white noise, we expect the
autocorrelations at each lag to remain within the dotted lines.

I See R examples.
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Regression with Lagged Variables

I Sometimes the response variable at the present time is related
to some predictor variable’s value several time periods in the
past.

Yt = β0 + β1Xt−k + εt

I This can be done fairly easily in R; see example with
recruitment and SOI data.
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Dealing with Nonstationary Processes

I We often see processes which can be represented by the form
Yt = µt + Xt , where µt is a nonconstant trend and Xt is a
stationary noise process with mean zero.

I The overall process Yt is a nonstationary process, since its
mean function is not constant.

I Detrending is a method of estimating the trend, then
subtracting the fitted values from Yt to get the residuals.

I The detrended residual process is then stationary.

I Another way of transforming nonstationary processes into
stationary processes is by differencing.

I This amounts to obtaining the differences of successive
Y-values: ∇Yt = Yt − Yt−1.

I Then the differenced time series, {∇Yt}, is stationary.
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Detrending or Differencing?

I An advantage of detrending is that we obtain an estimate of
the trend, which may be useful.

I An advantage of differencing is that we don’t need to estimate
any parameters (or even assume any model for the trend).

I If the trend estimate is not needed, then converting the
process to stationarity is more easily done by differencing.
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The Backshift Operator

I Define the backshift operator B as

BYt = Yt−1

I Similarly, B2Yt = Yt−2, and in general,

BkYt = Yt−k

I The inverse of the backshift operator is the forward-shift
operator B−1, defined so that B−1Yt−1 = Yt , and
B−1BYt = Yt .
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The Backshift Operator and Differencing

I We see that the first difference operator ∇ can be expressed as

∇Yt = (1− B)Yt

I The second difference is simply

∇2Yt = (1−B)2Yt = (1− 2B + B2)Yt = Yt − 2Yt−1 + Yt−2

which is equal to

∇(∇Yt) = ∇(Yt − Yt−1)

= (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2.

I In general,
∇dYt = (1− B)dYt

I See examples of differencing of chicken price and global
temperature data.
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Lagged Scatterplot Matrix

I Relations between two time series (possibly lagged) may not
be linear.

I One way to investigate the form of associations (including
lags) between time series is a lagged scatterplot matrix.

I A scatterplot matrix could show associations between Yt and
Yt−k for k = 1, 2, . . . . (investigating lags in a single time
series).

I Or it could show associations between Yt and Xt−k for
k = 0, 1, 2, . . . . (investigating associations and lags between
two separate time series).

I See examples with recruitment and SOI data.
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Smoothing Time Series

I Smoothing is a general way to discover long-term (possibly
nonlinear) trends in time series.

I The moving average smoother represents the mean at time t
by the average of the observed values around t:

mt =
k∑

j=−k
ajYt−j ,

where aj = a−j ≥ 0 and
∑k

j=−k aj = 1.

I If the nonzero aj ’s are all equal, then this is a simple moving
average. Otherwise, it is a weighted moving average.
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Kernel Smoothing of Time Series

I A kernel smoother determines the aj weights according to a
kernel function, which is a symmetric density function (often
chosen to be a normal density) centered at zero.

I When calculating mt , values close to t are given more weight
by the kernel function.

I The bandwidth of the kernel function controls the width of
the density function used.

I The larger the bandwidth, the smoother the overall mt curve
appears.

I See examples in R using the SOI series.
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Lowess Smoothing

I Lowess smoothing is a weighted regression method that is
similar to kernel smoothing.

I The span is the fraction of the values in the time series that
are used at each calculation of mt .

I The span plays a similar role as the bandwidth.

I The larger the span, the smoother the overall mt curve
appears.

I Lowess is also a good way to present a nonlinear relationship
between two time series.

I See R examples on SOI data (one time series), and the
temperature and mortality data (two time series).
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Classical Structural Modeling

I Classical structural modeling decomposes the time series into
several distinct components, for example:

Yt = Tt + St + εt ,

where Tt is a trend component, St is a seasonal component,
and εt is a noise component.

I The R function stl estimates and plots each of these
components.

I The decomposition is not unique.

I This does not work well for every time series – some series
may involve another cyclic component Ct , for example, a
business cycle (beyond seasonal) in sales data.

I Sometimes it is unclear whether some pattern should be
considered trend or a business cycle – see R example with
Hawaiian hotel occupancy data.
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