
Chapter 4: Models for Stationary Time Series

I Now we will introduce some useful parametric models for time
series that are stationary processes.

I We begin by defining the General Linear Process.

I Let {Yt} be our observed time series and let {et} be a white
noise process (consisting of iid zero-mean r.v.’s).

I {Yt} is a general linear process if it can be represented by

Yt = et + ψ1et−1 + ψ2et−2 + · · ·

where et , et−1, . . . are white noise.

I So this process is a weighted linear combination of present
and past white noise terms.
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More on General Linear Process

I When the number of terms is actually infinite, we need some
regularity condition on the coefficients, such as

∑∞
i=1 ψ

2
i <∞.

I Often we assume the weights are exponentially decaying, i.e.,

ψj = φj

where −1 < φ < 1.

I Then Yt = et + φet−1 + φ2et−2 + · · ·
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Properties of the General Linear Process

I Since the white noise terms all have mean zero, clearly
E (Yt) = 0 for all t.

I Also,

var(Yt) = var(et + φet−1 + φ2et−2 + · · · )
= var(et) + φ2var(et−1) + φ4var(et−2) + · · ·
= σ2e (1 + φ2 + φ4 + · · · )

=
σ2e

1− φ2
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More Properties of the General Linear Process

cov(Yt ,Yt−1) = cov(et + φet−1 + φ2et−2 + · · · ,
et−1 + φet−2 + φ2et−3 + · · · )
= cov(φet−1, et−1) + cov(φ2et−2, φet−2) + · · ·
= φσ2e + φ3σ2e + φ5σ2e + · · ·
= φσ2e (1 + φ2 + φ4 + · · · )

=
φσ2e

1− φ2

I Hence corr(Yt ,Yt−1) = φ.

I Similarly, cov(Yt ,Yt−k) =
φkσ2e

1− φ2
and corr(Yt ,Yt−k) = φk .
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Stationarity of the General Linear Process

I Thus we see this process is stationary.

I The expected value is constant over time, and this covariance
depends only only the lag k and not the actual time t.

I To obtain a process with some (constant) nonzero mean, we
can just add some term µ to the definition.

I This does not affect the autocovariance structure, so such a
process is still stationary.
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Moving Average Processes

I This is a special case of the general linear process.

I A moving average process of order q, denoted MA(q), is
defined as:

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q

I The simplest moving average process is the (first-order)
MA(1) process:

Yt = et − θet−1
I Note that we do not need the subscript on the θ since there is

only one of them in this model.
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Properties of the MA(1) Process

I It is easy to see that E (Yt) = 0 and var(Yt) = σ2e (1 + θ2).

I Furthermore, cov(Yt ,Yt−1) =
cov(et − θet−1, et−1 − θet−2) = cov(−θet−1, et−1) = −θσ2e .

I And cov(Yt ,Yt−2) = cov(et − θet−1, et−2 − θet−3) = 0, since
we see there are no subscripts in common.

I Similarly, cov(Yt ,Yt−k) = 0 for any k ≥ 2, so in the MA(1)
process, the observations farther apart than 1 time unit are
uncorrelated.

I Clearly, corr(Yt ,Yt−1) = ρ1 = −θ/(1 + θ2) for the MA(1)
process.
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Lag-1 Autocorrelation for the MA(1) Process

I We see that the value of corr(Yt ,Yt−1) = ρ1 depends on
what θ is.

I The largest value that ρ1 can be is 0.5 (when θ = −1) and
the smallest value that ρ1 can be is −0.5 (when θ = 1).

I Some examples: When θ = 0.1, ρ1 = −0.099; when
θ = 0.5, ρ1 = −0.40; when θ = 0.9, ρ1 = −0.497 (see R
example plots).

I Just reverse the signs when θ is negative: When
θ = −0.1, ρ1 = 0.099; when θ = −0.5, ρ1 = 0.40; when
θ = −0.9, ρ1 = 0.497.

I Note that the lag-1 autocorrelation will be the same for the
reciprocal of θ as for θ itself.

I Typically we will restrict attention to values of θ between −1
and 1 for reasons of invertibility (more later).
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Second-order Moving Average Process

I A moving average of order 2, denoted MA(2), is defined as:

Yt = et − θ1et−1 − θ2et−2

I It can be shown that, for the MA(2) process,

γ0 = var(Yt) = (1 + θ21 + θ22)σ2e

γ1 = cov(Yt ,Yt−1) = (−θ1 + θ1θ2)σ2e

γ2 = cov(Yt ,Yt−2) = −θ2σ2e
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Autocorrelations for Second-order Moving Average Process

I The autocorrelation formulas can be found in the usual way
from the autocovariance and variance formulas.

I For the specific case when θ1 = 1 and θ2 = −0.6,
ρ1 = −0.678 and ρ2 = 0.254.

I And ρk = 0 for k = 3, 4, . . ..

I The strong negative lag-1 autocorrelation, weakly positive
lag-2 autocorrelation, and zero lag-3 autocorrelation can be
seen in plots of Yt versus Yt−1, Yt versus Yt−2, etc., from a
simulated MA(2) process.
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Extension to MA(q) Process

I For the moving average of order q, denoted MA(q):

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q

I It can be shown that

γ0 = var(Yt) = (1 + θ21 + θ22 + · · ·+ θ2q)σ2e

I The autocorrelations ρk are zero for k > q and are quite
flexible, depending on θ1, θ2, . . . , θq, for earlier lags when
k ≤ q.

Hitchcock STAT 520: Forecasting and Time Series



Autoregressive Processes

I Autoregressive (AR) processes take the form of a regression of
Yt on itself, or more accurately on past values of the process:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et ,

where et is independent of Yt−1,Yt−2, . . . ,Yt−p.

I So the value of the process at time t is a linear combination
of past values of the process, plus some independent
“disturbance” or “innovation” term.
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The First-order Autoregressive Process

I The AR(1) process is (note we do not need a subscript on the
φ here) a stationary process with:

Yt = φYt−1 + et ,

I Without loss of generality, we can assume E (Yt) = 0 (if not,
we could replace Yt with Yt − µ everywhere).

I Note γ0 = var(Yt) = φ2var(Yt−1) + var(et) so that
γ0 = φ2γ0 + σ2e and we see:

γ0 =
σ2e

1− φ2
,

where φ2 < 1⇒ |φ| < 1.

Hitchcock STAT 520: Forecasting and Time Series



Autocovariances of the AR(1) Process

I Multiplying the AR(1) model equation by Yt−k and taking
expected values, we have:

E (Yt−kYt) = φE (Yt−kYt−1) + E (etYt−k)

⇒ γk = φγk−1 + E (etYt−k)

= φγk−1

since et and Yt−k are independent and (each) have mean 0.

I Since γk = φγk−1, then for k = 1, γ1 = φγ0 = φσ2e/(1− φ2).

I For k = 2, we get γ2 = φγ1 = φ2σ2e/(1− φ2).

I In general, γk = φkσ2e/(1− φ2).
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Autocorrelations of the AR(1) Process

I Since ρk = γk/γ0, we see:

ρk = φk , for k = 1, 2, 3, . . .

I Since |φ| < 1, the autocorrelation gets closer to zero (weaker)
as the number of lags increases.

I If 0 < φ < 1, all the autocorrelations are positive.

I Example: The correlation between Yt and Yt−1 may be
strong, but the correlation between Yt and Yt−8 will be much
weaker.

I So the value of the process is associated with very recent
values much more than with values far in the past.
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More on Autocorrelations of the AR(1) Process

I If −1 < φ < 0, the lag-1 autocorrelation is negative, and the
signs of the autocorrelations alternate from positive to
negative over the further lags.

I For φ near 1, the overall graph of the process will appear
smooth, while for φ near −1, the overall graph of the process
will appear jagged.

I See the R plots for examples.
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The AR(1) Model as a General Linear Process

I Recall that the AR(1) model implies Yt = φYt−1 + et , and
also that Yt−1 = φYt−2 + et−1.

I Substituting, we have Yt = φ(φYt−2 + et−1) + et , so that
Yt = et + φet−1 + φ2Yt−2.

I Repeating this by substituting into the past “infinitely” often,
we can represent this by:

Yt = et + φet−1 + φ2et−2 + φ3et−3 + · · ·

I This is in the form of the general linear process, with ψj = φj

(we require that |φ| < 1).
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Stationarity

I For an AR(1) process, it can be shown that the process is
stationary if and only if |φ| < 1.

I For an AR(2) process, one following
Yt = φ1Yt−1 + φ2Yt−2 + et , we consider the AR
characteristic equation:

1− φ1x − φ2x2 = 0.

I The AR(2) process is stationary if and only if the solutions of
the AR characteristic equation exceed 1 in absolute value, i.e.,
if and only if

φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1.
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Autocorrelations and Variance of the AR(2) Process

I The formulas for the lag-k autocorrelation, ρk , and the
variance γ0 = var(Yt) of an AR(2) process are complicated
and depend on φ1 and φ2.

I The key things to note are:
I the autocorrelation ρk dies out toward 0 as the lag k increases;
I the autocorrelation function can have a wide variety of shapes,

depending on the values of φ1 and φ2 (see R examples).
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The General Autoregressive Process

I For an AR(p) process:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et

the AR characteristic equation is:

1− φ1x − φ2x2 + · · ·+ φpx
p = 0.

I The AR(p) process is stationary if and only if the solutions of
the AR characteristic equation exceed 1 in absolute value.

Hitchcock STAT 520: Forecasting and Time Series



Autocorrelations in the General AR Process

I If the process is stationary, we may form what are called the
Yule-Walker equations:

ρ1 = φ1 + φ2ρ1 + φ3ρ2 + · · ·+ φpρp−1

ρ2 = φ1ρ1 + φ2 + φ3ρ1 + · · ·+ φpρp−2
...

ρp = φ1ρp−1 + φ2ρp−2 + φ3ρp−3 + · · ·+ φp

and solve numerically for the autocorrelations ρ1, ρ2, . . . , ρk .
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The Mixed Autoregressive Moving Average (ARMA) Model

I Consider a time series that has both autoregressive and
moving average components:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et − θ1et−1−
θ2et−2 − · · · − θqet−q.

I This is called an Autoregressive Moving Average process of
order p and q, or an ARMA(p, q) process.
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The ARMA(1, 1) Model

I The simplest type of ARMA(p, q) model is the ARMA(1, 1)
model:

Yt = φYt−1 + et − θet−1.

I The variance of a Yt that follows the ARMA(1, 1) process is:

γ0 =
1− 2φθ + θ2

1− φ2
σ2e

I The autocorrelation function of the ARMA(1, 1) process is,
for k ≥ 1:

ρk =
(1− θφ)(φ− θ)

1− 2θφ+ θ2
φk−1
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Autocorrelations of the ARMA(1, 1) Process

I The autocorrelation function ρk of an ARMA(1, 1) process
decays toward 0 as k increases, with damping factor φ.

I Under the AR(1) process, the decay started from ρ0 = 1, but
for the ARMA(1, 1) process, the decay starts from ρ1, which
depends on θ and φ.

I The shape of the autocorrelation function can vary, depending
on the signs of φ and θ.
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Other Properties of the ARMA(1, 1) and ARMA(p, q)
Processes

I The ARMA(1, 1) process (and the general ARMA(p, q)
process) can also be written as a general linear process.

I The ARMA(1, 1) process is stationary if and only if the
solution to the AR characteristic equation 1− φx = 0 is
greater than 1, i.e., if and only if |φ| < 1.

I The ARMA(p, q) process is stationary if and only if the
solutions to the AR characteristic equation all exceed 1.

I The values of the autocorrelation function ρk for an
ARMA(p, q) process can be found by numerically solving a
series of equations that depend on either φ1, . . . , φp or
θ1, . . . , θq.
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Invertibility

I Recall that the MA(1) process is nonunique: We get the same
autocorrelation function if we replace θ by 1/θ.

I A similar nonuniqueness property holds for higher-order
moving average models.

I We have seen that an AR process can be represented as an
infinite-order MA process.

I Can an MA process be represented as an AR process?

I Note that in the MA(1) process, Yt = et − θet−1. So
et = Yt + θet−1, and similarly, et−1 = Yt−1 + θet−2.

I So et = Yt + θ(Yt−1 + θet−2) = Yt + θYt−1 + θ2et−2.

I We can continue this substitution “infinitely often” to obtain:

et = Yt + θYt−1 + θ2Yt−2 + · · ·
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More on Invertibility

I Rewriting, we get

Yt = −θYt−1 − θ2Yt−2 − · · ·+ et

I If |θ| < 1, this MA(1) model has been inverted into an
infinite-order AR model.

I So the MA(1) model is invertible if and only if |θ| < 1.

I In general, the MA(q) model is invertible if and only if the
solutions of the MA characteristic equation

1− θ1x − θ2x2 − · · · − θqxq = 0

all exceed 1 in absolute value.

I We see invertibility of MA models is similar to stationarity of
AR models.
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Invertibility and the Nonuniqueness Problem

I We can solve the nonuniqueness problem of MA processes by
restricting attention only to invertible MA models.

I There is only one set of coefficient parameters that yield an
invertible MA process with a particular autocorrelation
function.

I Example: Both Yt = et + 2et−1 and Yt = et + 0.5et−1 have
the same autocorrelation function.

I But of these two, only the second model is invertible (its
solution to the MA characteristic equation is −2).

I For ARMA(p, q) models, we restrict attention to those models
which are both stationary and invertible.
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