Chapter 4: Models for Stationary Time Series

» Now we will introduce some useful parametric models for time
series that are stationary processes.

> We begin by defining the General Linear Process.

> Let {Y;} be our observed time series and let {e;} be a white
noise process (consisting of iid zero-mean r.v.'s).

» {Y:} is a general linear process if it can be represented by
Yi=et+tr1er—1+ o6 o+ -

where e, e;_1, ... are white noise.

» So this process is a weighted linear combination of present
and past white noise terms.
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More on General Linear Process

» When the number of terms is actually infinite, we need some
regularity condition on the coefficients, such as y 72, 1#,-2 < 00.

» Often we assume the weights are exponentially decaying, i.e.,

Y= ¢

where —1 < ¢ < 1.
> Then Y; = e + der—1 + ¢Per_p+ -
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Properties of the General Linear Process

» Since the white noise terms all have mean zero, clearly
E(Y:) =0 for all ¢t.

> Also,

var(Y:) = var(e; + per_1 + d?ero+---)
= var(e;) + ¢?var(et_1) + ¢*var(e;_o) + - - -
o1+ ¢+ + )
oe

1-¢2
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More Properties of the General Linear Process

cov(Ye, Yeo1) = cov(er + der—1 + d2ern + -+,
€1+ per_o + ¢2et—3 +--0)
= cov(per_1,e:1) + cov(d®er_o, per o) + - -
= doe+ @’0c + 70+
= goe(1+¢"+ 0"+

_ 902
“1-p
» Hence corr(Y:, Yio1) = ¢.
k 2
» Similarly, cov(Y:, Yi—k) = 1_—052 and corr(Ys, Yi_i) = k.
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Stationarity of the General Linear Process

» Thus we see this process is stationary.

» The expected value is constant over time, and this covariance
depends only only the lag k and not the actual time t.

» To obtain a process with some (constant) nonzero mean, we
can just add some term p to the definition.

» This does not affect the autocovariance structure, so such a
process is still stationary.
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Moving Average Processes

This is a special case of the general linear process.

v

v

A moving average process of order g, denoted MA(q), is
defined as:

Y =e — 01601 —bhet o — - — eqet—q

v

The simplest moving average process is the (first-order)
MA(1) process:
Ye=e —Oet_1

v

Note that we do not need the subscript on the 6 since there is
only one of them in this model.
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Properties of the MA(1) Process

» It is easy to see that E(Y;) = 0 and var(Y;) = o2(1 + 62).

» Furthermore, cov(Y:, Yi—1) =
cov(er —Oer_1,er_1 — Oer_p) = cov(—0Oer_1,e;_1) = —0o2.

» And cov(Y:, Yi—2) = cov(er — Oer—_1, e — OBer—3) = 0, since
we see there are no subscripts in common.

» Similarly, cov(Ys, Yi—k) = 0 for any k > 2, so in the MA(1)
process, the observations farther apart than 1 time unit are
uncorrelated.

» Clearly, corr(Ys, Yi_1) = p1 = —0/(1 + 6?) for the MA(1)
process.
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Lag-1 Autocorrelation for the MA(1) Process

» We see that the value of corr(Y:, Yi—1) = p1 depends on
what 6 is.

» The largest value that p; can be is 0.5 (when §# = —1) and
the smallest value that p; can be is —0.5 (when 6 = 1).

» Some examples: When 6 = 0.1, p; = —0.099; when
0 = 0.5, p1 = —0.40; when 6 = 0.9, p; = —0.497 (see R
example plots).

> Just reverse the signs when 6 is negative: When
0 = —0.1, p; = 0.099; when § = —0.5, p; = 0.40; when
0 =—-0.9,p1 = 0.497.

» Note that the lag-1 autocorrelation will be the same for the
reciprocal of @ as for 6 itself.

» Typically we will restrict attention to values of § between —1
and 1 for reasons of invertibility (more later).
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Second-order Moving Average Process

» A moving average of order 2, denoted MA(2), is defined as:
Yy = e — 01601 — Orer_»
> It can be shown that, for the MA(2) process,
Yo = var(Y:) = (14 62 4 63)02

71 = cov( Yy, Yeo1) = (—01 + 6162)02

Y2 = COV( Yt, Yt—2) = —020’2
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Autocorrelations for Second-order Moving Average Process

» The autocorrelation formulas can be found in the usual way
from the autocovariance and variance formulas.

» For the specific case when 6; =1 and #, = —0.6,
p1 = —0.678 and p, = 0.254.

» And pp, =0for k=3,4,....

> The strong negative lag-1 autocorrelation, weakly positive
lag-2 autocorrelation, and zero lag-3 autocorrelation can be
seen in plots of Y; versus Y;_1, Y; versus Y;_», etc., from a
simulated MA(2) process.
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Extension to MA(q) Process

» For the moving average of order g, denoted MA(q):
Y =e — 01601 —bher o — -+ —Oger_q
> |t can be shown that
Yo =var(Yy) = (1+6;+ 65+ +062)02

» The autocorrelations py are zero for k > g and are quite
flexible, depending on 61,6, ..., 04, for earlier lags when
k<gq.
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Autoregressive Processes

» Autoregressive (AR) processes take the form of a regression of
Y} on itself, or more accurately on past values of the process:

Ye =01Yeo1+PoYe o+ -+ 0pYept+oe,

where e; is independent of Y;_1, Yi—2,..., Yi—p.

> So the value of the process at time t is a linear combination
of past values of the process, plus some independent
“disturbance” or “innovation” term.
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The First-order Autoregressive Process

» The AR(1) process is (note we do not need a subscript on the
¢ here) a stationary process with:

Y = ¢Yi—1+ e,

» Without loss of generality, we can assume E(Y:) = 0 (if not,
we could replace Y; with Y; — p everywhere).

» Note yo = var(Y;) = ¢?var(Y;_1) + var(e;) so that
Yo = ¢?y0 + 02 and we see:

o2

_ e

where ¢ < 1 = |¢| < 1.
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Autocovariances of the AR(1) Process

» Multiplying the AR(1) model equation by Y;_, and taking
expected values, we have:
E(YikYt) = ¢E(Yi—kYe-1) + E(er Yi—«)
= Yk = dyk-1 + E(et Yi—«)
= ¢Yk-1

since e; and Y;_ are independent and (each) have mean 0.
> Since Yk = ¢yk—1. then for k =1, y1 = ¢yo = @02 /(1 — ¢?).
> For k =2, we get 1 = ¢m = ¢202/(1 — ¢2).
> In general, v = ¢¥o2 /(1 — ¢?).
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Autocorrelations of the AR(1) Process

v

Since px = Yk /70, We see:
pr = ¢k, for k=1,2,3,...

» Since |¢| < 1, the autocorrelation gets closer to zero (weaker)
as the number of lags increases.

» If 0 < ¢ <1, all the autocorrelations are positive.

» Example: The correlation between Y; and Y;_1 may be
strong, but the correlation between Y; and Y;_g will be much
weaker.

» So the value of the process is associated with very recent
values much more than with values far in the past.
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More on Autocorrelations of the AR(1) Process

» If —1 < ¢ < 0, the lag-1 autocorrelation is negative, and the
signs of the autocorrelations alternate from positive to
negative over the further lags.

» For ¢ near 1, the overall graph of the process will appear
smooth, while for ¢ near —1, the overall graph of the process
will appear jagged.

> See the R plots for examples.
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The AR(1) Model as a General Linear Process

> Recall that the AR(1) model implies Y; = ¢Y:_1 + €, and
also that Yi_1 = ¢Yi o+ 1.

» Substituting, we have Y; = ¢(¢Yi—2 + €:—1) + e, so that
Y: = e + per_1 + ¢* Yeo.

» Repeating this by substituting into the past “infinitely” often,
we can represent this by:

Y = et + der1 + ¢2et—2 + ¢3et—3 +---

» This is in the form of the general linear process, with v; = &
(we require that |¢| < 1).
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Stationarity

» For an AR(1) process, it can be shown that the process is
stationary if and only if |¢| < 1.

» For an AR(2) process, one following
Yi = ¢1Yi—1 + ¢2Yi—2 + e, we consider the AR
characteristic equation:

1—¢1X—¢2X2 =0.

» The AR(2) process is stationary if and only if the solutions of
the AR characteristic equation exceed 1 in absolute value, i.e.,
if and only if

d1+¢2 <1,¢p—¢1 <1, and |¢p| < 1.
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Autocorrelations and Variance of the AR(2) Process

» The formulas for the lag-k autocorrelation, py, and the
variance o = var(Y;) of an AR(2) process are complicated
and depend on ¢; and ¢;.

» The key things to note are:

» the autocorrelation pi dies out toward 0 as the lag k increases;
» the autocorrelation function can have a wide variety of shapes,
depending on the values of ¢; and ¢, (see R examples).
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The General Autoregressive Process

» For an AR(p) process:
Ye=01Ye1+ 2o+ -+ @pYipter
the AR characteristic equation is:
1 — 1x — gax® 4 -+ pxP = 0.

» The AR(p) process is stationary if and only if the solutions of
the AR characteristic equation exceed 1 in absolute value.
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Autocorrelations in the General AR Process

» If the process is stationary, we may form what are called the
Yule-Walker equations:

p1= Q1+ Q2p1+ P3p2+ -+ Gppp-1
p2 = ¢1p1 + 2 + P3p1 + -+ Pppp_2

Pp = Q1Pp—1 + P2pp—2 + P3pp—3 + -+ Pp

and solve numerically for the autocorrelations p1, p2, ..., p«-
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The Mixed Autoregressive Moving Average (ARMA) Model

> Consider a time series that has both autoregressive and
moving average components:

Yi=01Yi1+Yeo+ -+ 0pYipt+er — 016 1—

926t_2 — = Qqet_q.

» This is called an Autoregressive Moving Average process of
order p and g, or an ARMA(p, q) process.
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The ARMA(1, 1) Model

» The simplest type of ARMA(p, q) model is the ARMA(1,1)
model:
Yi=0Yi 1+ e —0Oet1.

» The variance of a Y; that follows the ARMA(1,1) process is:

1-2¢0+62 ,
’70:1_—¢20e

» The autocorrelation function of the ARMA(1,1) process is,

for k > 1:
(1-09)(¢—0)

_ k—1
= gp 12 ¢
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Autocorrelations of the ARMA(1,1) Process

» The autocorrelation function px of an ARMA(1, 1) process
decays toward 0 as k increases, with damping factor ¢.

» Under the AR(1) process, the decay started from pg = 1, but
for the ARMA(1, 1) process, the decay starts from p;, which
depends on 6 and ¢.

» The shape of the autocorrelation function can vary, depending
on the signs of ¢ and 6.
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Other Properties of the ARMA(1,1) and ARMA(p, q)

Processes

» The ARMA(1,1) process (and the general ARMA(p, q)
process) can also be written as a general linear process.

» The ARMA(1,1) process is stationary if and only if the
solution to the AR characteristic equation 1 — ¢x =0 is
greater than 1, i.e., if and only if |¢| < 1.

» The ARMA(p, q) process is stationary if and only if the
solutions to the AR characteristic equation all exceed 1.

» The values of the autocorrelation function py for an
ARMA(p, q) process can be found by numerically solving a

series of equations that depend on either ¢1,..., ¢, or
01,...,04.
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Invertibility

> Recall that the MA(1) process is nonunique: We get the same
autocorrelation function if we replace 6 by 1/6.

» A similar nonuniqueness property holds for higher-order
moving average models.

» We have seen that an AR process can be represented as an
infinite-order MA process.

» Can an MA process be represented as an AR process?

> Note that in the MA(1) process, Y; = e; — fet_1. So
e = Yy +0e;_1, and similarly, e;_1 = Y:_1 + fer_».

> SO et = Yt -+ Q(Yt_l + Het_z) = Yt =+ 9Yt_1 —+ Hzet_Q.
» We can continue this substitution “infinitely often” to obtain:

er=Ye+0Yr1+02Yen+ -
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More on Invertibility

> Rewriting, we get
Ye=—0Y1—0*Yeo— - +e

» If || < 1, this MA(1) model has been inverted into an
infinite-order AR model.

» So the MA(1) model is invertible if and only if |0| < 1.

> In general, the MA(q) model is invertible if and only if the
solutions of the MA characteristic equation

1—01x —0px® — -+ —0gx7 =0

all exceed 1 in absolute value.

> We see invertibility of MA models is similar to stationarity of
AR models.
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Invertibility and the Nonuniqueness Problem

We can solve the nonuniqueness problem of MA processes by
restricting attention only to invertible MA models.

There is only one set of coefficient parameters that yield an
invertible MA process with a particular autocorrelation
function.

Example: Both Y; = e; +2e;_1 and Y; = e; + 0.5e;_1 have
the same autocorrelation function.

But of these two, only the second model is invertible (its
solution to the MA characteristic equation is —2).

For ARMA(p, q) models, we restrict attention to those models
which are both stationary and invertible.
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