
Chapter 6: Model Specification for Time Series

I The ARIMA(p, d , q) class of models as a broad class can
describe many real time series.

I Model specification for ARIMA(p, d , q) models involves

1. Choosing appropriate values for p, d , and q;
2. Estimating the parameters (e.g., the φ’s, θ’s, and σ2

e ) of the
ARIMA(p, d , q) model;

3. Checking model adequacy, and if necessary, improving the
model.

I This process of iteratively proposing, checking, adjusting, and
re-checking the model is known as the “Box-Jenkins method”
for fitting time series models.
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The Sample Autocorrelation Function

I We know that the autocorrelations are important
characteristics of our time series models.

I To get an idea of the autocorrelation structure of a process
based on observed data, we look at the sample autocorrelation
function:

rk =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=1(Yt − Ȳ )2

I We look for patterns in the rk values that are similar to known
patterns of the ρk for ARMA models that we have studied.

I Since rk are merely estimates of ρk , we cannot expect the rk
patterns to match the ρk patterns of a model exactly.
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The Sampling Distribution of rk

I Because of its form and the fact that it is a function of
possibly correlated variables, rk does not have a simple
sampling distribution.

I For large sample sizes, the approximate sampling distribution
of rk can be found, when the data come from ARMA-type
models.

I This sampling distribution is approximately normal with mean
ρk , so a strategy for checking model adequacy is to see
whether the rk ’s fall within 2 standard errors of their expected
values (the ρk ’s).

I For our purposes, we consider several common models and
find the approximate expected values, variances, and
correlations of the rk ’s under these models.
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The Sampling Distribution of rk Under Common Models

I First, under general conditions, for large n, rk is approximately
normal with expected value ρk .

I If {Yt} is white noise, then for large n, var(rk) ≈ 1/n and
corr(rk , rj) ≈ 0 for k 6= j .

I If {Yt} is AR(1) having ρk = φk for k > 0, then
var(r1) ≈ (1− φ2)/n.

I Note that r1 has smaller variance when φ is near 1 or −1.
I And for large k :

var(rk) ≈ 1

n

[
1 + φ2

1− φ2

]
I This variance tends to be larger for large k than for small k ,

especially when φ is near 1 or −1.
I So when φ is near 1 or −1, we can expect rk to be relatively

close to ρk = φk for small k , but not especially close to
ρk = φk for large k.
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The Sampling Distribution of rk Under the AR(1) Model

I In the AR(1) model,

corr(r1, r2) ≈ 2φ

√
1− φ2

1 + 2φ2 − 3φ4

I For example, if φ = 0.9, then corr(r1, r2) = 0.97. Similarly, if
φ = −0.9, then corr(r1, r2) = −0.97.

I If φ = 0.2, then corr(r1, r2) = 0.38. Similarly, if φ = −0.2,
then corr(r1, r2) = −0.38.

I Exhibit 6.1 on page 111 of the textbook gives other example
values for corr(r1, r2) and var(rk) for selected values of k and
φ, assuming an AR(1) process.

I To determine whether a certain model (like AR(1) with
φ = 0.9) is reasonable, we can examine the sample
autocorrelation function and compare the observed values
from our data to those we would expect, under that model.
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The Sampling Distribution of rk Under the MA(1) Model

I For the MA(1) model, var(r1) = (1− 3ρ21 + 4ρ41)/n and
var(rk) = (1 + 2ρ21)/n for k > 1.

I Exhibit 6.2 on page 112 of the textbook gives other example
values for corr(r1, r2) and var(rk) for any k and selected
values of θ, under the MA(1) model.

I For the MA(q) model, var(rk) = (1 + 2
∑q

j=1 ρ
2
j )/n for k > q.
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The Need to Go Beyond the Autocorrelation Function

I The sample autocorrelation function (ACF) is a useful tool to
check whether the lag correlations that we see in a data set
match what we would expect under a specific model.

I For example, in an MA(q) model, we know the
autocorrelations should be zero for lags beyond q, so we could
check the sample ACF to see where the autocorrelations cut
off for an observed data set.

I But for an AR(p) model, the autocorrelations don’t cut off at
a certain lag; they die off gradually toward zero.
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Partial Autocorrelation Functions

I The partial autocorrelation function (PACF) can be used to
determine the order p of an AR(p) model.

I The PACF at lag k is denoted φkk and is defined as the
correlation between Yt and Yt−k after removing the effect of
the variables in between: Yt−1, . . . ,Yt−k+1.

I If {Yt} is a normally distributed time series, the PACF can be
defined as the correlation coefficient of a conditional bivariate
normal distribution:

φkk = corr(Yt ,Yt−k |Yt−1, . . . ,Yt−k+1)
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Partial autocorrelations in the AR(p) and MA(q) Processes

I In the AR(1) process, φkk = 0 for all k > 1.

I So the partial autocorrelation for lag 1 is not zero, but for
higher lags, it is zero.

I More generally, in the AR(p) process, φkk = 0 for all k > p.

I Clearly, examining the PACF for an AR process can help us
determine the order of that process.

I For an MA(1) process,

φkk =
θk(1− θ2)

1− θ2(k+1)

I So the partial autocorrelation of an MA(1) process never
equals zero exactly, but it decays to zero quickly as k
increases.

I In general, the PACF for a MA(q) process behaves similarly as
the ACF for an AR process of the same order.
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Expressions for the Partial Autocorrelation Function

I For a stationary process with known autocorrelations
ρ1, . . . , ρk , the φkk satisfy the Yule-Walker equations:

ρj = φk1ρj−1 + φk2ρj−2 + · · ·+ φkkρj−k , for j = 1, 2, . . . , k

I For a given k , these equations can be solved for
φk1, φk2, . . . , φkk (though we only care about φkk).

I We can do this for all k .

I If the stationary process is actually AR(p), then φpp = φp,
and the order p of the process is whatever is the highest lag
with a nonzero φkk .
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The Sample Partial Autocorrelation Function

I By replacing the ρk ’s in the previous set of linear equations by
rk ’s, we can solve these equations for estimates of the φkk ’s.

I Equation (6.2.9) on page 115 of the textbook gives a formula
for solving recursively for the φkk ’s in terms of the ρk ’s.

I Replacing the ρk ’s by rk ’s, we get the sample partial
autocorrelations, the φ̂kk ’s.
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Using the Sample PACF to Assess the Order of an AR
Process

I If the model of AR(p) is correct, then the sample partial
autocorrelations for lags greater than p are approximately
normally distributed with means 0 and variances 1/n.

I So for any lag k > p, if the sample partial autocorrelation φ̂kk
is within 2 standard errors of zero (between −2/

√
n and

2/
√
n), then this indicates that we do not have evidence

against the AR(p) model.

I If for some lag k > p, we have φ̂kk < −2/
√
n or φ̂kk > 2/

√
n,

then we may need to change the order p in our model (or
possibly choose a model other than AR).

I This is a somewhat informal test, since it doesn’t account for
the multiple decisions being made across the set of values of
k > p.
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Summary of ACF and PACF to Identify AR(p) and MA(q)
Processes

I The ACF and PACF are useful tools for identifying pure
AR(p) and MA(q) processes.

I For an AR(p) model, the true ACF will decay toward zero.

I For an AR(p) model, the true PACF will cut off (become
zero) after lag p.

I For an MA(q) model, the true ACF will cut off (become zero)
after lag q.

I For an MA(q) model, the true PACF will decay toward zero.

I If we propose either an AR(p) model or a MA(q) model for
an observed time series, we could examine the sample ACF or
PACF to see whether these are close to what the true ACF or
PACF would look like for this proposed model.
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Extended Autocorrelation Function for Identifying ARMA
Models

I For an ARMA(p, q) model, the true ACF and true PACF both
have infinitely many nonzero values.

I Neither the true ACF nor the true PACF will cut off entirely
after a certain number of lags.

I So it is hard to determine the correct orders of an
ARMA(p, q) model simply by using the ACF and PACF.

I The extended autocorrelation function (EACF) is one method
proposed to assess the orders of a ARMA(p, q) model.

I Other methods for specifying ARMA(p, q) models include the
corner method and the smallest canonical correlation (SCAN)
method, which we will not discuss here.
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Some Details about the Extended Autocorrelation
Function Method

I In an ARMA(p, q) model, if we “filter out” (i.e., subtract off)
the autoregressive component(s), we are left with a pure
MA(q) process that can be specified using the ACF approach.

I For example, consider an ARMA(1, 1) model:

Yt = φYt−1 + et − θet−1.

I If we regress Yt on Yt−1, we get an inconsistent estimator of
φ, but this regression’s residuals do tell us about the behavior
of the error process {et}.

I So then let’s regress Yt on Yt−1 AND the lag 1 of the first
regression’s residuals, which stand in for et−1.

I In this second regression, the estimated coefficient of Yt−1

(call it φ̃) is a consistent estimator of φ.
I Then Wt = Yt − φ̃Yt−1, having “filtered out” the

autoregressive part, should be approximately MA(1).

Hitchcock STAT 520: Forecasting and Time Series



More Details about the Extended Autocorrelation Function
Method

I For higher-order ARMA processes, we would need more of
these sequential regressions to consistently estimate the AR
coefficients (we’d need q extra regressions for an AR(p, q)
model).

I In practice, both AR order p and MA order q are unknown, so
we need to do this iteratively, considering grids of values for p
and q.

I This iterative estimation of AR coefficients, assuming a
hypothetical ARMA(k , j) model, produces “filtered” values

Wt,k,j = Yt − φ̃1Yt−1 − · · · − φ̃kYt−k
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Extended Sample Autocorrelations

I The extended sample autocorrelations are the sample
autocorrelations of Wt,k,j .

I If the hypothesized AR order k is actually the correct AR
order, p, and if the hypothesized MA order j ≥ q, then
{Wt,k,j} is an MA(q) process.

I In that case, the true autocorrelations of Wt,k,j of lag q + 1 or
higher should be zero.

I We can try finding the extended sample autocorrelations for a
grid of values of k = 0, 1, 2, . . . and a grid of values of
j = 0, 1, 2, . . ..
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The EACF in Table Form

I We can summarize the EACFs by creating a table with an
“X” in the k-th row and j-th column if the lag j + 1 sample
autocorrelation of Wt,k,j is significantly different from zero.

I Since the sample autocorrelations are approximately
N(0, 1/(n − k − j)) under the MA(j) process, the sample
autocorrelation is significantly different from zero if its
absolute value exceeds 1.96/

√
n − j − k .

I The table gets an “0” in its k-th row and j-th column if the
lag j + 1 sample autocorrelation of Wt,k,j is NOT significantly
different from zero.
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The EACF in Table Form (Continued)

I The EACF table for an ARMA(p, q) process should
theoretically have a triangular pattern of zeroes with the
top-left zero occurring in the p-th row and q-th column (with
the row and column labels both starting from 0).

I (In reality, the sample EACF table will not be as clear-cut as
the examples that follow, since the sample EACF values have
sampling variability.)
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Theoretical EACF Table for an ARMA(1, 1) Process

AR/MA 0 1 2 3 4 5 6 7 8 9 10

0 x x x x x x x x x x x
1 x 0 0 0 0 0 0 0 0 0 0
2 x x 0 0 0 0 0 0 0 0 0
3 x x x 0 0 0 0 0 0 0 0
4 x x x x 0 0 0 0 0 0 0
5 x x x x x 0 0 0 0 0 0
6 x x x x x x 0 0 0 0 0
7 x x x x x x x 0 0 0 0
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Theoretical EACF Table for an ARMA(2, 3) Process

AR/MA 0 1 2 3 4 5 6 7 8 9 10

0 x x x x x x x x x x x
1 x x x x x x x x x x x
2 x x x 0 0 0 0 0 0 0 0
3 x x x x 0 0 0 0 0 0 0
4 x x x x x 0 0 0 0 0 0
5 x x x x x x 0 0 0 0 0
6 x x x x x x x 0 0 0 0
7 x x x x x x x x 0 0 0
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