
Chapter 6, Part 2: Specification of Example Time Series

I We now use some of the tools we have learned to specify
some actual time series (some simulated examples, some real
examples).

I In R, we can obtain the ACF and the PACF and use these to
decide between an AR model and an MA model, and to
decide the correct order of the model.

I Sometimes neither a pure AR model nor a pure MA model
seems to fit, so we could consider an ARMA model and use
the EACF to determine the correct orders.

I We first consider some example simulated time series, which
are generated to follow some known model, but we pretend we
don’t know the model and use our diagnostic tools to specify
the model.
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A Simulated MA(1) Time Series

I See the example R code for the analysis of some simulated
data (which actually follows an MA(1) process).

I The ACF can be obtained in R using the acf function.

I By default, the acf function plots dotted lines at ±2/
√
n.

I This is two times the “naive” standard error – it would be
correct under the white noise model.

I With the ci.type=‘ma’ option, we obtain dotted lines at ±2
times the more appropriate standard errors (which would be
correct under the MA model).
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The ACF of the Simulated MA(1) Time Series

I First, we check whether the sample autocorrelations cut off
(become not significantly different from zero) after a certain
lag.

I If a sample autocorrelation remains inside the dotted lines, we
can say it is not significantly different from zero.

I If the sample autocorrelations cut off after lag q, say, then
this is evidence that an MA(q) model may be correct.

I For our simulated data, can we conclude that an MA(1)
model is correct? Do the sample autocorrelations appear to
“become zero” after lag 1?
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Another Couple of Simulated MA Time Series

I In the R examples, we look at the ACF of a different
simulated MA(1) time series.

I Again, we check the ACF plot to see whether the sample
autocorrelations cut off (become not significantly different
from zero) after lag 1.

I The next example is a simulated MA(2) time series.

I For this series, to determine whether it should be specified as
an MA(2) process, we check the ACF plot to see whether the
sample autocorrelations cut off after lag 2.
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Specification for AR Models

I In the next example, we consider a simulated AR(1) process.

I Looking at the ACF, we see that the sample autocorrelations
decay gradually toward zero, rather than cutting off abruptly
after a certain lag.

I In fact, the sample ACF becomes negative from lags 10
through 16, which is surprising.

I The fact that the sample autocorrelations do not cut off after
a certain lag tells us that we should NOT use an MA model
for this time series.

I If we use an AR model for these data, we should examine the
PACF to determine the order of the AR model.

I In this simulated example, the PACF cuts off after lag 1, so an
AR(1) model makes sense.
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An Example of a Simulated AR(2) Data Set

I The next R example is from a simulated time series that
actually follows an AR(2) process.

I The ACF for this series does display the “wave” shape that we
might expect from an AR(2) process.

I The PACF shows a cutoff after lag 2, so an AR(2) model
makes sense.
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Simulating an ARMA(1, 1) Data Set

I Exhibit 6.14 on page 123 shows a simulated time series
following the ARMA(1, 1) process.

I Based on the ACF and especially the PACF, an AR(1) model
would seem reasonable for this time series.

I But the EACF (obtained with the eacf function in R)
indicates that an ARMA(1, 1) or ARMA(2, 1) model would fit
well.

I We see that these diagnostic tools do not always give clearcut
answers as to which model is best.

I This is true even with simulated data, so with real data
(which might only approximately follow a common model),
the performance of these diagnostic tools might be even more
shaky.
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Assessing Nonstationarity through ACFs

I We have seen that many real time series exhibit nonstationary
behavior.

I For these, ARIMA would be a better model than ARMA-type
models.

I Sometimes the nonstationarity can be seen from a regular plot
of the time series: for example, if we can see that the mean or
the variance changes over time.

I Sometimes the ACF plot can reveal nonstationarity as well.

I With a nonstationary series, the ACF typically does not die off
quickly as the lag increases.
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Example of Assessing Nonstationarity through ACFs

I With the oil price data, the ACF clearly does not die off, and
all the displayed sample autocorrelations are significantly
nonzero.

I Taking a log transformation of the oil prices and then taking
first differences, we see the ACF supports a MA(1) model.

I That would indicate that the original data (or a logged version
of it) could follow an IMA(1, 1) process.

I If taking the first differences of a nonstationary series does not
produce a series that appears stationary, then we could try
taking the second differences and examining the ACF and
PACF.
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Overdifferencing

I In a time series is already stationary, then its differences will
also be stationary.

I But we should not take differences on a series that is already
stationary.

I For example, if the original data follow a random walk
process, then taking first differences would produce a
stationary white noise model.

I If we take second differences (this would be overdifferencing),
it theoretically produces an MA(1) process with θ = 1 (though
with an actual data set we would be forced to estimate θ).

I But to claim the original series is IMA(2, 1) is incorrect: The
random walk is actually an IMA(1, 1) process with θ = 0.
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More on Overdifferencing

I Overdifferencing will create a noninvertible model, which leads
to problems with interpretability and parameter estimation.

I See the R example with a simulated random walk series to
illustrate the dangers of overdifferencing.

I To prevent overdifferencing, it is recommended to look
carefully at each difference in succession and not to choose a
model that is more complicated than necessary.
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The Dickey-Fuller Unit Root Test

I The Dickey-Fuller Unit Root Test is a formal hypothesis test
for whether the time series is “difference nonstationary.”

I The null hypothesis is that the series is nonstationary, but can
be made stationary by differencing.

I The alternative hypothesis is that the series is stationary.

I The assumption of the test is that the time series follows an
AR(k) process, but in practice k is unknown, and must be
estimated.

I The test statistic of the augmented Dickey-Fuller (ADF) test
is a t-statistic from a least squares regression of the first
differences of {Yt} on the lag-1 of the series and the past k
lags of the first-differenced series.
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More on the Dickey-Fuller Unit Root Test

I In other cases, we may wish to test for “trend nonstationarity,”
which implies that the series has a deterministic trend, but is
stationary once this trend is removed.

I This can be tested by performing the ADF test on the
detrended data, or equivalently by including the covariates
defining the trend in the previously mentioned regression.

I The R function adfTest in the fUnitRoots package can
perform these ADF tests for difference nonstationarity and for
trend nonstationarity.

I The R function adf.test in the tseries package can
perform the ADF test for trend nonstationarity.

I See the R examples on the course web page.
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Other Methods of Specification: The AIC

I A general method of model selection is to choose the model
with the smallest Akaike Information Criterion (AIC):

AIC = −2 log L + 2k ,

where L here is the maximized likelihood function and
k = p + q + 1 for a model with an intercept term and
k = p + q for a model without an intercept.

I Models with a large L have a good fit to the data, while
models with a small k are less complex, so the 2k piece serves
as a “penalty” that discourages choosing overly complex
models, even if those models produce a good fit to the
observed data.
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Other Methods of Specification: More on the AIC

I The AIC can be viewed as a (biased) estimator of the
“Kullback-Leibler divergence” of the estimated model from
the true model.

I A bias-corrected version of the AIC,

AICc = AIC +
2(k + 1)(k + 2)

n − k − 2

is occasionally used as a criterion, since it is an unbiased
estimator of the Kullback-Leibler divergence.
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Another Method of Specification

I Another common method of model selection is to choose the
model with the smallest Bayesian Information Criterion (BIC):

BIC = −2 log L + k log(n),

which (similar to AIC ) is a penalized measure of goodness of
fit.

I If the true model is ARMA(p, q), the BIC has the nice
property of consistency: As the sample size gets larger, the
estimates of p and q produced using the BIC approach the
true orders p and q.

I If the true model is not ARMA(p, q), then using AIC can
produce the estimated ARMA process that is closest possible
to the true process, among a large class of ARMA models.
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Issues with Estimation

I Using either AIC or BIC requires maximum likelihood
estimation, which can lead to numerical problems with ARMA
models due to the complicated likelihood function.

I The Hanna-Rissanen approach to estimating ARMA models
consists of two steps:

1. Fitting a high-order AR process and determining the correct
order by minimizing AIC;

2. Then estimating k and j of an ARMA(k , j) model by
regressing the time series on its own lags 1 to k and on lags 1
to j of the residuals from the high-order AR model.

I The best approach for estimating the orders of an
ARMA(p, q) model is to consider several “best subset”
models that may include a few lag terms in them.

I The R function armasubsets produces a summary of some
“best” ARMA models; see the example on some simulated
ARMA(12, 12) data.
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Specification of Some Actual Time Series

I Consider the Los Angeles rainfall data (recall that an
exploratory analysis of this time series did not reveal any
notable year-to-year dependence).

I We see taking logarithms of the data makes the responses
more normally distributed.

I The sample ACF of the log-transformed data shows no
dependence evident at any lag.

I It would be sensible to model these values as independent
(actually, iid) random variables over time.
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Specification of the Color Property Time Series

I Exploratory plots of the color property series did indicate some
association between color values in successive batches.

I The sample ACF shows significant autocorrelation at lag-1;
should we consider an MA(1) model?

I Note the “damped sine wave” appearance of the sample ACF,
however, which encourages us to examine the sample PACF.

I The sample PACF shows a significant partial autocorrelation
at lag 1, and near zero sample partial autocorrelations at
other lags.

I Based on this, an AR(1) model may be most appropriate, but
we will investigate further using model diagnostics.
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Specification of the Canadian Hare Time Series

I The Canadian hare abundance series also showed signs of
dependence over time.

I Could a transformation of the abundance values improve the
modeling of these data?

I A Box-Cox analysis suggests a square-root transformation.

I The sample ACF again shows the damped sine wave pattern.

I The sample PACF supports an AR(2) model (or maybe
AR(3)?).
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Specification of the Oil Price Time Series

I For the oil price time series, there was graphical evidence that
the differenced logarithms of the oil prices were stationary.

I The augmented Dickey-Fuller test concludes the logged oil
price series itself is nonstationary (large P-value).

I So differencing the logged series makes sense.

I An EACF table of the differences of the logged prices can
indicate appropriate orders p and q for an ARMA(p, q) model.

I The table suggests the choices p = 0 and q = 1 may work
well.
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Specification of the Oil Price Time Series, Continued

I The armasubsets function in the TSA package, applied to the
differences of logs of oil prices, suggests including Yt−1 and
Yt−4, and no lags in the error terms.

I The next best model includes Yt−1 (and again no lags in the
error terms), which corresponds to an ARIMA(1, 1, 0) model
for the logged oil price series itself.

I The sample ACF possibly suggests an MA(1) model (but is
there a damped sine wave pattern?).

I The sample PACF suggests an AR(2) model (although note
the large spikes at later lags).

I We could consider all of these models (possibly using an
overall criterion like AIC?) when we undertake parameter
estimation and model diagnostics.

I Outliers in the oil price time series should also be dealt with
(see original time series plot).
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Specification of Other Time Series

I The ACF and PACF of the recruitment data shows a
recognizable pattern.

I The ACF and PACF of the SOI data do not appear to
correspond to any stationary ARMA model.

I Does taking first differences yield a recognizable model?

I If not, we could try second differences.

I If we take a log transformation of the Johnson and Johnson
earnings data, we get an ACF and PACF with a recognizable
pattern.

I Sometimes the patterns shown by the ACF, PACF, and EACF
indicate something more complicated than a simple AR or MA
model; see the airmiles example.
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Using the auto.arima Function for Automated Model
Selection

I The auto.arima function in the forecast package
automatically searches among a large class of ARIMA models
and picks the one with the lowest AIC (or BIC or AICc , if the
user wants).

I By default, it uses a stepwise model selection approach to
make the search faster.

I The function considers values of p and q up to 5 and values
of d up to 2 (these can be adjusted with the arguments
max.p, max.q, and max.d).

Hitchcock STAT 520: Forecasting and Time Series



Caution About Comparing ARMA vs. ARIMA models using
AIC

I One should not compare an ARMA model (with d = 0) to an
ARIMA model (with d > 0) using AIC or any other
information criterion.

I Since these two models have different response variables (one
uses Yt and the other uses ∇dYt), the AIC values for these
models are not comparable.

I The correct amount of differencing (if any) should be chosen
first, and then AIC can be used to guide the choices of p
and/or q.

I The auto.arima function first decides on the best value of d
(using a unit root test) and then chooses the best values of p
and q based on the specified information criterion (such as
AIC ).
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Caveats About the auto.arima Function

I The auto.arima function is quick and useful, especially if
many ARIMA fits must be done in an automated way.

I But when analyzing a single series, using the auto.arima

function should not replace a complete investigation of the
behavior of the series (such as via the ACF, PACF and/or
EACF).

I See the R examples for using auto.arima on some real data
examples.

I By default, auto.arima also considers some more
complicated models that we will study in Chapter 9 and 10.
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