
Chapter 8: Model Diagnostics

I Model diagnostics involve checking how well the model fits.

I If the model fits poorly, we consider changing the specification
of the model.

I A major tool of model diagnostics is residual analysis.

I We will also check overparameterized models.

I That is, we fit a slightly more general model than the one we
originally specified.

I We can check to see whether we need the more general
model, or whether the originally specified model is sufficient.
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Residual Analysis

I We have seen residual analysis in Chapter 3 when we
examined the residuals after fitting a trend model.

I For AR models, the definition of the residuals is
straightforward.

I For example, with the AR(1) model containing a constant
term, Yt = θ0 + φYt−1 + et the residuals are:

êt = Yt − θ̂0 − φ̂Yt−1.
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Residual Analysis in General ARMA Models

I For ARMA models, we use the infinite autoregressive
representation of the model, whose estimated coefficients are
functions of the estimated φ’s and θ’s.

I The residuals are calculated as Yt − Ŷt , where Ŷt is the best
forecast of Yt based on Yt−1,Yt−2, . . . (we will discuss this
forecasting concept more in Chapter 9).

I In any case, if the model is correctly specified, the residuals
should have the properties of white noise (independent normal
r.v.’s with zero mean and common variances).

I If the residuals deviate from this white-noise behavior in some
way, we may want to change our model to something more
appropriate.
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Residual Plots

I The most basic residual plot is the plot of standardized
residuals against time.

I If this plot shows a rectangular band of scatter around the
zero level, with no notable trends over time, this indicates
that the specified model is adequate.

I See the residual plot for an AR(1) modeling of the color
property series.

I See the residual plot from an AR(3) model fit for the
square-root transformed hare data.

I See the residual plot from an IMA(1, 1) model fit for the
logged oil price time series.
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Q-Q Plots to Check Normality

I Determining whether the error terms are normally distributed
in a time series model can be useful, since some inferences
assume normal errors.

I A normal Q-Q plot of the residuals is a graphical check for
normal errors.

I If the Q-Q plot resembles a straight line, then the assumption
that the errors are normally distributed is reasonable.

I The Shapiro-Wilk test is a formal hypothesis test for normality.

I The null hypothesis is that the errors are normal; a small
p-value would cause us to doubt the normality assumption.

I See the R examples on the course web page.
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Checking Independence of Errors

I If the noise terms are truly white noise, they should be
uncorrelated.

I However, the residuals from even a correctly specified model
can have nonzero autocorrelations, especially for smaller lags.

I If the sample ACF of the residuals shows autocorrelations
significantly different from zero, we may need to change the
model.

I The naive bounds ±2/
√
n can be used as a rough guide of

significance; if sample autocorrelations stay well within these
bounds, the autocorrelation can be assumed to be minimal
(see R example).

I We should pay close attention to autocorrelations at lags
12, 24, . . . for monthly data, and 4, 8, . . . for quarterly data.
Excessive autocorrelation at these lags can indicate we need
to use a model that accounts for seasonality.
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Ljung-Box Test for Serial Dependence

I The Ljung-Box test checks whether the entire set of residual
correlations is larger than we would expect to see if the
correct ARMA-type model was specified.

I In any ARMA(p, q) model (which includes AR(p) and MA(q)
models as special cases), the test statistic is

Q∗ = n(n + 2)

(
r̂1

n − 1
+

r̂2
n − 2

+ · · ·+ r̂K
n − K

)
.

I If Q∗ is large relative to a χ2
K−(p+q) distribution (i.e., if the

test’s p-value is very small), then we conclude that the model
is not appropriate due to the large residual autocorrelations.

I The maximum lag K is chosen fairly large so that lags beyond
K are negligible; it may be wise to perform the test for a
range of values of K .

I The tsdiag function in R plots p-values of the Ljung-Box
test across a series of values of K .

I See the R examples on the color property data.
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Runs Test for Dependence of Errors

I In Chapter 3, we saw the runs test, which can assess whether
a time series can be viewed as independent.

I The runs test can be applied to the residuals to check whether
the errors are dependent.

I If the p-value of the runs test on the residuals is very small
(say, less than 0.05), we can reject the hypothesis of
independent errors.
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Overfitting

I A reasonable strategy to check whether our proposed model is
reasonable is to overfit with a slightly more general model.

I The proposed model should be a special case of the more
general model.

I For example, if we believe an AR(2) model is appropriate, we
could overfit the data with an AR(3) model, which includes
one additional parameter, φ3 in this case.

I The proposed AR(2) would be appropriate if:

1. The additional parameter (say, φ3 in the above example) is not
significantly different from zero in the overfit model, and

2. the estimates of the other parameter(s) do not change much
from the proposed model to the overfit model.
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Overfitting Example: Color Property Data

I See the R example of overfitting the color property data with
an AR(2) model to check the adequacy of our proposed
AR(1) model.

I A different way of overfitting for the color property data would
be to try an ARMA(1, 1) model to check the adequacy of our
proposed AR(1) model.

I Note that both the AR(2) model and the ARMA(1, 1) model
include the AR(1) model as a special case.

I For the color property data, the evidence from each overfit
model supports the original choice of an AR(1) model.

I See the R code for examples of residual analysis and
overfitting with other time series.
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Parameter Redundancy (Lack of Identifiability)

I When generalizing a model, it is possible to get parameter
redundancy.

I Page 187 of the text gives the example of an ARMA(1, 2)
model that can also be represented as an ARMA(2, 3) model.

I But in the ARMA(2, 3) model, the parameters are not
uniquely identifiable.

I For any value of a particular constant, the model holds, and
so the parameters can have infinitely many sets of values that
would yield an equally good model.

I Clearly this lack of identifiability is a problem in a parametric
model, and so we would not want to use the ARMA(2, 3)
model here.
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Advice for the Overfitting Strategy

I Carefully specify the original model, using evidence such as
the ACF, PACF, and/or EACF, and any practical knowledge
about the data process you might have.

I If a simple model fits well, it is usually preferable to a more
complicated model.

I When overfitting, you should not increase the orders of the
AR component and the MA component simultaneously.

I Use the residual analysis to give you clues about how to
extend the model.

I For example, if you fit an MA(1) model and the residual
analysis shows substantial lag-2 correlation in the residuals,
then try overfitting with an MA(2) model rather than with an
ARMA(1, 1) model.
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