One of the critical goals of time series analysis is to forecast (predict) the values of the time series at times in the future. When forecasting, we ideally should evaluate the precision of the forecast. We will consider examples of forecasts for
1. deterministic trend models;
2. ARMA- and ARIMA-type models;
3. models containing deterministic trends and ARMA (or ARIMA) stochastic components.

The methods we use here assume the model (including parameter values) is known exactly.

This is not true in practice, but for large sample sizes, the parameter estimates should be close to the true parameter values.
Minimum MSE Forecasting

- Assume we have observed the time series up to the present time, t, so that we have observed Y_1, Y_2, \ldots, Y_t.
- The goal is to forecast the value of $Y_{t+\ell}$, which is the value ℓ time units into the future.
- In this case, time t is called the forecast origin and ℓ is called the lead time of the forecast.
- The forecast (predicted future value) itself is denoted $\hat{Y}_t(\ell)$.
- We will find the forecast formula that minimizes the mean square error (MSE) of the forecast, $E[(Y_{t+\ell} - \hat{Y}_t(\ell))^2]$, for a variety of models.
Consider the trend model $Y_t = \mu_t + X_t$, where μ_t is some deterministic trend and the stochastic component, X_t has mean zero.

In particular, we assume $\{X_t\}$ is white noise with variance γ_0. Then

$$
\hat{Y}_t(\ell) = E(\mu_{t+\ell} + X_{t+\ell} | Y_1, Y_2, \ldots, Y_t) \\
= E(\mu_{t+\ell} | Y_1, Y_2, \ldots, Y_t) + E(X_{t+\ell} | Y_1, Y_2, \ldots, Y_t) \\
= E(\mu_{t+\ell}) + E(X_{t+\ell}) = \mu_{t+\ell},
$$

since $X_{t+\ell}$ has mean zero and is independent of the previously observed values Y_1, Y_2, \ldots, Y_t.
In the case in which we assume a linear trend, $\mu_t = \beta_0 + \beta_1 t$.

So the forecast of the response at ℓ time units into the future is $\hat{Y}_t(\ell) = \beta_0 + \beta_1 (t + \ell)$.

This forecast assumes that the same linear trend holds in the future, which can be a dangerous assumption, since we don’t have the (future) data (yet) to justify it.
For a quadratic trend, where $\mu_t = \beta_0 + \beta_1 t + \beta_2 t^2$, the forecast is $\hat{Y}_t(\ell) = \beta_0 + \beta_1(t + \ell) + \beta_2(t + \ell)^2$.

With higher-order polynomial trends, extrapolating into the future becomes even more risky.

For periodic seasonal means models in which $\mu_t = \mu_{t+12}$, the forecast is $\hat{Y}_t(\ell) = \mu_{t+12+\ell} = \hat{Y}_t(\ell + 12)$.

So for such models, the forecast at a particular time is the same as the forecast at the time 12 months later.

See the examples of forecasts on real data sets on the course web page.
The forecast error is denoted by \(e_t(\ell) \):

\[
e_t(\ell) = Y_{t+\ell} - \hat{Y}_t(\ell) = \mu_{t+\ell} + X_{t+\ell} - \mu_{t+\ell} = X_{t+\ell},
\]

so that \(E[e_t(\ell)] = E[X_{t+\ell}] = 0 \).

Thus the forecast is unbiased.

And the forecast error variance is \(\text{var}[e_t(\ell)] = \text{var}[X_{t+\ell}] = \gamma_0 \), which does not depend on the lead time \(\ell \).
Consider the AR(1) process with a nonzero mean μ:

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + e_t.$$

Suppose we want to forecast the process 1 time unit into the future. Note that

$$Y_{t+1} - \mu = \phi(Y_t - \mu) + e_{t+1}.$$

Taking the conditional expected value (given Y_1, Y_2, \ldots, Y_t) of both sides, we have:

$$\hat{Y}_t(1) - \mu = \phi[E(Y_t|Y_1, Y_2, \ldots, Y_t) - \mu] + E(e_{t+1}|Y_1, Y_2, \ldots, Y_t)$$

$$= \phi[Y_t - \mu] + E(e_{t+1}) = \phi[Y_t - \mu].$$

since e_{t+1} is independent of Y_1, Y_2, \ldots, Y_t and has mean zero.
So $\hat{Y}_t(1) = \mu + \phi(Y_t - \mu)$.

That is, the forecast for the next value is the process mean, plus some fraction of the current deviation from the process mean.

If we forecast not just 1 time unit but ℓ time units into the future, we have

$$\hat{Y}_t(\ell) = \mu + \phi[\hat{Y}_t(\ell - 1) - \mu] \text{ for } \ell \geq 1.$$

So any forecast can be found recursively: We can find $\hat{Y}_t(1)$, which we can then use to find $\hat{Y}_t(2)$, etc.

This recursive formula is called the difference equation form of the forecasts.
A General Formula for Forecasts in AR(1) Models

Note that we can solve for a general formula for a forecast with a lead time ℓ in an AR(1) process:

$$
\hat{Y}_t(\ell) = \phi[\hat{Y}_t(\ell - 1) - \mu] + \mu
$$

$$
= \phi[\{\phi[\hat{Y}_t(\ell - 2) - \mu]\} + \mu - \mu] + \mu
$$

$$
= \phi[\{\phi[\hat{Y}_t(\ell - 2) - \mu]\}] + \mu
$$

$$
\vdots
$$

$$
= \phi^{\ell-1}[\hat{Y}_t(1) - \mu] + \mu
$$

$$
= \phi^{\ell-1}[\mu + \phi(Y_t - \mu) - \mu] + \mu
$$

which implies that $\hat{Y}_t(\ell) = \mu + \phi^\ell(Y_t - \mu)$.

So the fraction of the current deviation from the process mean that is added to μ becomes closer to zero as the lead time gets larger.
Recall that we used a AR(1) model for the color property time series.

Via ML, we estimated ϕ and μ to be 0.5705 and 74.3293, respectively.

For the purpose of the forecast, we will take these to be the true parameter values (though they really are not).

The last observed value, Y_t, of this color property series was 67.

So forecasting 1 time unit into the future yields $
\hat{Y}_t(1) = 74.3293 + 0.5705(67 - 74.3293) = 70.14793.$
To forecast, say, 5 time units into the future, we can continue recursively, or just use the general formula to obtain:

\[\hat{Y}_t(5) = 74.3293 + 0.5705^5(67 - 74.3293) = 73.88636. \]

Note that forecasting 20 time units into the future yields

\[\hat{Y}_t(20) = 74.3293 + 0.5705^{20}(67 - 74.3293) = 74.3292. \]

We see that for a large lag time, the forecast nearly equals \(\mu \).

In general, for all stationary ARMA models, \(\hat{Y}_t(\ell) \approx \mu \) for large \(\ell \).
The one-step-ahead forecast error $e_t(1)$ is the difference between the actual value of the process one time unit into the future and the predicted value one time unit ahead.

For the $AR(1)$ model, this is $e_t(1) = Y_{t+1} - \hat{Y}_t(1) = [\phi(Y_t - \mu) + \mu + e_{t+1}] - [\phi(Y_t - \mu) + \mu] = e_{t+1}$.

So the one-step-ahead forecast error is simply a white-noise observation, and it is independent of Y_1, Y_2, \ldots, Y_t.

And $\text{var}[e_t(1)] = \sigma_e^2$.
The forecast error for a general lead time, ℓ, $e_t(\ell)$, is the difference between the actual value of the process ℓ time units into the future and the predicted value ℓ time units ahead.

For any general linear process, it can be shown that

$$e_t(\ell) = e_{t+\ell} + \psi_1 e_{t+\ell-1} + \psi_2 e_{t+\ell-2} + \cdots + \psi_{\ell-1} e_{t+1}$$

Clearly, $E[e_t(\ell)] = 0$, so the forecasts are unbiased.

And $\text{var}[e_t(\ell)] = \sigma_e^2 (1 + \psi_1^2 + \psi_2^2 + \cdots + \psi_{\ell-1}^2)$.

These results hold for all ARIMA models.
For an AR(1) process, the forecast error for a general lead time is

\[e_t(\ell) = e_{t+\ell} + \phi e_{t+\ell-1} + \phi^2 e_{t+\ell-2} + \cdots + \phi^{\ell-1} e_{t+1} \]

And \(\text{var}[e_t(\ell)] = \sigma_e^2 \left[\frac{1 - \phi^{2\ell}}{1 - \phi^2} \right] \).

So for long lead times, \(\text{var}[e_t(\ell)] \approx \frac{\sigma_e^2}{1 - \phi^2} \) for large \(\ell \).

And since this right hand side is the variance formula for an AR(1) process, note that \(\text{var}[e_t(\ell)] \approx \text{var}(Y_t) = \gamma_0 \) for large \(\ell \).

This last result holds for all stationary ARMA models.
Consider now an $MA(1)$ model with a nonzero mean,
\[Y_t = \mu + e_t - \theta e_{t-1}. \]
Replacing t by $t + 1$ and taking conditional expectations, we have
\[\hat{Y}_t(1) = \mu - \theta E(e_t \mid Y_1, Y_2, \ldots, Y_t). \]
If the model is invertible, then $E(e_t \mid Y_1, Y_2, \ldots, Y_t) = e_t$ (at least approximately, since we condition on Y_1, Y_2, \ldots, Y_t rather than on the infinite history $\ldots, Y_0, Y_1, Y_2, \ldots, Y_t$).
If the model is not invertible, then $E(e_t \mid Y_1, Y_2, \ldots, Y_t) \neq e_t$ (not even approximately).
For an invertible $MA(1)$ model, the one-step-ahead forecast is
\[\hat{Y}_t(1) = \mu - \theta e_t. \]
Again, the one-step-ahead forecast error is
\[e_{t}(1) = Y_{t+1} - \hat{Y}_{t}(1) = [\mu + e_{t+1} - \theta e_{t}] - [\mu - \theta e_{t}] = e_{t+1}. \]

For longer lead time, where \(\ell > 1 \),

\[\hat{Y}_{t}(\ell) = \mu + E(e_{t+\ell} | Y_1, Y_2, \ldots, Y_t) - \theta E(e_{t+\ell-1} | Y_1, Y_2, \ldots, Y_t) \]

But for \(\ell > 1 \), both \(e_{t+\ell} \) and \(e_{t+\ell-1} \) are independent of \(Y_1, Y_2, \ldots, Y_t \), so these conditional expected values are both zero.

Therefore, in an invertible MA(1) model, \(\hat{Y}_{t}(\ell) = \mu \) for \(\ell > 1 \).
Now we consider forecasting with a nonstationary ARIMA process.

Specifically, consider the *random walk with drift* model, where

\[Y_t = Y_{t-1} + \theta_0 + e_t. \]

This is basically an *ARIMA*(0, 1, 0) model with an extra constant term.

The forecast one step ahead is

\[
\hat{Y}_t(1) = E(Y_t|Y_1, Y_2, \ldots, Y_t) + \theta_0 + E(e_{t+1}|Y_1, Y_2, \ldots, Y_t) \\
= Y_t + \theta_0
\]
For $\ell > 1$, $\hat{Y}_t(\ell) = \hat{Y}_t(\ell - 1) + \theta_0$.

So by iterating backward, we see that $\hat{Y}_t(\ell) = Y_t + \theta_0 \ell$ for $\ell \geq 1$.

The forecast, as a function of the lead time ℓ, is a straight line with slope θ_0.

With nonstationary series, the presence of the constant term has a major effect on the forecast, so it is important to determine whether the constant term is truly needed (we could check whether it is significantly different from zero).
For the random walk with drift model, the one-step-ahead forecast error is again $e_t(1) = Y_{t+1} - \hat{Y}_t(1) = e_{t+1}$.

But the forecast error ℓ steps ahead can be shown to be $e_t(\ell) = e_{t+1} + e_{t+2} + \cdots + e_{t+\ell}$.

So $\text{var} [e_t(\ell)] = \ell \sigma_e^2$.

In this nonstationary model, the variance of the forecast error continues to increase without bound as the lead time gets larger.

This phenomenon will happen with all nonstationary ARIMA models.

On the other hand, with stationary models, the variance of the forecast error increases as the lead time gets larger, but there is a limit to the increase.

And with deterministic trend models, the variance of the forecast error is constant as the lead time gets larger.
The general difference equation form for forecasts in the ARMA\((p, q)\) model is somewhat complicated:

\[
\hat{Y}_t(\ell) = \phi_1 \hat{Y}_t(\ell - 1) + \phi_2 \hat{Y}_t(\ell - 2) + \cdots + \phi_p \hat{Y}_t(\ell - p) + \theta_0 \\
- \theta_1 e_{t+\ell-1} I[\ell \leq 1] - \theta_2 e_{t+\ell-2} I[\ell \leq 2] \\
- \cdots - \theta_q e_{t+\ell-2} I[\ell \leq q]
\]

where the indicator \(I[\cdot]\) equals 1 if the condition in the brackets is true, and 0 otherwise.

For example, with an ARMA\((1, 1)\) model,
\[
\hat{Y}_t(1) = \phi Y_t + \theta_0 - \theta e_t, \quad \text{and} \quad \hat{Y}_t(2) = \phi \hat{Y}_t(1) + \theta_0, \quad \text{and in general,} \quad \hat{Y}_t(\ell) = \phi \hat{Y}_t(\ell - 1) + \theta_0 \quad \text{for} \quad \ell \geq 2.
\]

With an ARMA\((1, 1)\) model, an explicit general formula for a forecast \(\ell\) time units ahead, in terms of \(\mu = E(Y_t)\), is

\[
\hat{Y}_t(\ell) = \mu + \phi^\ell(Y_t - \mu) - \phi^{\ell-1} \theta e_t \quad \text{for} \quad \ell \geq 1.
\]
For lead time $\ell = 1, 2, \ldots, q$, the noise terms appear in the formulas for the forecasts.

For longer lead times (i.e., $\ell > q$) the noise terms disappear and only the autoregressive component (and the constant term) of the model affects the forecast.

For $\ell > q$, the difference equation formula for the $ARMA(p, q)$ model reduces to

$$\hat{Y}_t(\ell) = \phi_1 \hat{Y}_t(\ell - 1) + \phi_2 \hat{Y}_t(\ell - 2) + \cdots + \phi_p \hat{Y}_t(\ell - p) + \theta_0.$$
Since we have shown that $\theta_0 = \mu (1 - \phi_1 - \phi_2 - \cdots - \phi_p)$, this can be rewritten as

$$\hat{Y}_t(\ell) - \mu = \phi_1 [\hat{Y}_t(\ell - 1) - \mu] + \phi_2 [\hat{Y}_t(\ell - 2) - \mu] + \cdots + \phi_p [\hat{Y}_t(\ell - p) - \mu] \text{ for } \ell \geq q.$$

For a stationary ARMA model, $\hat{Y}_t(\ell) - \mu$ will decay toward zero as the lead time ℓ increases, and thus for long lead times, the forecast will approximately equal the process mean μ.

This is sensible because for stationary models, the dependence grows weaker as the time between observations increases, and μ would be the natural best forecast to use if there were no dependence over time.
We have seen one example of forecasting with nonstationary models (the random walk with drift).

For an ARIMA(1, 1, 1) model,

\[
\hat{Y}_t(1) = (1 + \phi) Y_t - \phi Y_{t-1} + \theta_0 - \theta e_t \\
\hat{Y}_t(2) = (1 + \phi) \hat{Y}_t(1) - \phi Y_t + \theta_0 \\
\vdots \\
\hat{Y}_t(\ell) = (1 + \phi) \hat{Y}_t(\ell - 1) - \phi \hat{Y}_t(\ell - 2) + \theta_0
\]

These forecasts are unbiased, i.e., \(E[e_t(\ell)] = 0 \) for any \(\ell \geq 1 \).
But the variance of the forecast error is

$$\text{var}[e_t(\ell)] = \sigma_e^2 \sum_{j=0}^{\ell-1} \psi_j^2 \text{ for } \ell \geq 1.$$

For a nonstationary series, these ψ_j weights do not decay to zero as j increases.

So the forecast error variance increases without bound as the lead time ℓ increases.

Lesson: With nonstationary series, when we forecast far into the future, we have a lot of uncertainty about the forecast.