
Chapter 9, Part 2: Prediction Limits

I We have shown how to forecast (predict) future values Yt+`,
but it is also important to assess the precision of our
predictions.

I We can do this by obtaining prediction limits (i.e., a
prediction interval) for Yt+`.

I To obtain these intervals, we will have to make an assumption
about the distribution of the stochastic component (white
noise terms) in our model.

I The formulas we will use will assume the white noise terms
follow a normal distribution.

I If this assumption does not hold for the original data, we can
transform the data (possibly using evidence from a Box-Cox
analysis).
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Prediction with a Deterministic Trend Model

I With a deterministic trend model, Yt = µt + Xt , where µt is
some deterministic trend and the stochastic component Xt

has mean zero, the forecast is

Ŷt(`) = µt+`.

I If Xt is normally distributed, then the forecast error
et(`) = Yt+` − Ŷt(`) = Xt is also normally distributed.

I And var [et(`)] = γ0, which is the noise variance.

I This implies that
Yt+` − Ŷt(`)√

var [et(`)]

follows a standard normal distribution.
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Prediction with a Deterministic Trend Model

I So with probability 1− α, the future observation (` time units
ahead), Yt+`, falls within the interval

Ŷt(`)± zα/2
√
var [et(`)]

I Note that this is technically a prediction interval rather than a
confidence interval, since the quantity that we hope the
interval contains is a random quantity.

I Consider the Dubuque temperature data, for which we used a
harmonic regression model for the trend.

I The forecast of the June 1976 average temperature was 68.3,
and the estimate of the noise standard deviation (see R code)
was 3.7.

I So a 95% prediction interval for the June 1976 average
temperature is 68.3± (1.96)(3.7) or (61.05, 75.55).
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The Prediction Limits are only Approximate

I The above prediction interval method would be correct if the
parameters of the trend model were known exactly.

I In practice, however, we estimate these parameters from our
sample data.

I When our prediction is based on estimated parameters, the
forecast error variance is not really γ0, but rather
γ0[1 + 1/n + c(n, `)], where c(n, `) is some function of the
sample size and the lead time.

I But for the trend models we typically consider (harmonic,
linear, or quadratic trends), both 1/n and c(n, `) are typically
quite small when the sample size is large.

I For a harmonic model with period 12, c(n, `) = 2/n.
I And for a linear trend model, c(n, `) ≈ 3/n for moderate lead

time ` and large n.
I Therefore, using γ0 as the forecast error variance produces an

approximately correct interval when n is large.
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Forecast Error with ARIMA-type Models

I Now consider models in the ARIMA class (including AR, MA,
and ARMA models).

I If the white noise terms are normally distributed, then the
forecast error et(`) is again normally distributed.

I But for ARIMA models, the forecast error variance is a
function of both the noise variance and the ψ-weights:

var [et(`)] = σ2e

`−1∑
j=0

ψ2
j .

I In reality, the ψ-weights are functions of the φ’s and θ’s, which
must be estimated, and the σ2e must be estimated as well.

I But plugging in these estimates has little effect on the validity
of the prediction limits, for large sample sizes.
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Prediction Intervals with an AR(1) Model

I With an AR(1) model, the forecast error variance formula is
fairly simple:

var [et(`)] = σ2e
1− φ2`

1− φ2

I Consider the AR(1) model for the color property series. Using
ML, we obtained the estimates φ̂ = 0.5705, µ̂ = 74.3293, and
σ̂2e = 24.8.

I Our forecast one time unit ahead (` = 1) was 70.14793.

I The 95% prediction interval for this forecast is

70.14793±(1.96)

√
(24.8)

1− 0.57052(1)

1− 0.57052
= 70.14793±(1.96)

√
24.8,

or (60.39, 79.91).
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More Prediction Intervals with an AR(1) Model

I Our forecast two time units ahead (` = 2) was 71.94342.
I The 95% prediction interval for this forecast is

71.94342± (1.96)

√
(24.8)

1− 0.57052(2)

1− 0.57052
,

or (60.71, 83.18).
I Our forecast ten time units ahead (` = 10) was 74.30249

(very near µ̂, recall).
I The 95% prediction interval for this forecast is

74.30249± (1.96)

√
(24.8)

1− 0.57052(10)

1− 0.57052
,

or (62.41, 86.20).
I As ` gets larger, for this AR(1) model, both the forecast and

the prediction limits converge to some fixed long-lead values.
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Plots of Forecasts and Prediction Limits

I These formulas can be used to calculate the forecast and
prediction limits for one forecast at a time, but often it is
more useful to plot forecasts and prediction limits for several
future values.

I The arima function in R can generate an object from which
we can plot the observed time series, plus the forecasts and
95% prediction limits at any desired number of future time
points.

I See R example with the harmonic regression on the Dubuque
temperature data.

I In this example, we append 2 years of missing values to the
tempdub data in order to forecast the temperature for two
years into the future.
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Plots of Forecasts and Prediction Limits: AR(p) Models

I See R example with the AR(1) model on the color property
data.

I Note that the forecasts and the 95% prediction limits
converge toward their long-lead values, getting near them just
a few time units into the future.

I The long-lead forecast for this model is simply the estimated
process mean (see plot).
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More Plots of Forecasts and Prediction Limits: AR(p)
Models

I See R example with the AR(3) model on the
(square-root-transformed) hare data.

I Note that the forecasts and the 95% prediction limits take
longer to converge toward their long-lead values.

I The long-lead forecast plot for this AR(3) model still shows
the cyclical pattern even going 25 years into the future (see
plot).

I What if we go even further into the future (say, 100 years)?

I See another R example with the sarima.for function in the
astsa package, with the AR(2) model on the recruitment
data.
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Prediction Intervals with the MA(1) Model

I We have seen that for an MA(1) model, the best forecast is
Ŷt(1) = µ− θet for ` = 1 and Ŷt(`) = µ for ` > 1.

I The forecast error variance var [et(`)] for the MA(1) model is
σ2e for ` = 1 and σ2e (1 + θ2) for ` > 1.

I By plugging the estimates into the formula

Ŷt(`)± zα/2
√
var [et(`)]

we obtain a (1− α)100% prediction interval in the usual way.

I In practice, we can easily obtain the forecasts and prediction
limits for MA models (or any ARIMA models) using the
sarima.for function in R.
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A Note about Forecasting Using ARIMA Models with
Differencing

I Recall from our previous example with the random walk with
drift model (an ARIMA(0, 1, 0) model), the presence or
absence of a constant term θ0 in the model made a big
difference in the forecasts.

I In that example, we saw that, as a function of the lead time `,
the forecasts increased (or decreased) linearly, with slope θ0
(the θ0 represented the “drift”).

I In general, with ARIMA models that include differencing
(having d > 0), the presence or absence of a constant term
changes the forecasts substantially.
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Recommendations for Forecasting Using ARIMA Models
with Differencing

I However, the arima function in the TSA package does not
allow you to include a mean µ or constant term θ0 in the
model unless d = 0.

I With a nonstationary ARIMA model for differenced data, it is
recommended instead to use the sarima function in R.

I By default, sarima includes an intercept term, which we
could estimate and check whether it was significantly different
from zero.

I If the intercept is not significantly different from 0, it is fine
then to fit the model without it, but if the intercept is needed,
we should use a model that includes it (see example with
logged GNP data in R).
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Updating ARIMA Forecasts

I Suppose we have yearly time series data, with the last
observed year being 2022.

I We can use the data to forecast the values for 2023, 2024,
2025, etc.

I Once time passes and we actually observe the true value for
2023, we can use this additional information to update our
previous forecasts for 2024, 2025, etc.

I We could simply redo the whole forecast from scratch, based
on years . . . , 2021, 2022, 2023, but there is a shortcut way to
update our previously obtained forecasts.

I There is a straightforward updating equation for ARIMA
models in terms of the ψ-weights:

Ŷt+1(`) = Ŷt(`+ 1) + ψ`[Yt+1 − Ŷt(1)]

I The part in brackets, Yt+1 − Ŷt(1), is the actual forecast error
at time t + 1, which is known once Yt+1 has been observed.
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Updating ARIMA Forecasts: Color Property Example

I Recall the color property series in which we used the 35
observed values and an AR(1) model to forecast future values
for times 36, 37, . . .

I Note: For the AR(1) model, ψ` = φ`.

I Our forecast 1 time unit into the future yielded
Ŷ35(1) = 70.14793, and our forecast 2 time units into the
future was Ŷ35(2) = 71.94342.

I Suppose the actual value at time 36 becomes available, and it
is 65.

I Our updated forecast for the value at time 37 is then

Ŷ36(1) = Ŷ35(2) + ψ1[Y36 − Ŷ35(1)]

= 71.94342 + 0.5705(65− 70.14793) = 69.00673.
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Forecast Weights and EWMAs

I For ARIMA models without moving average terms, it is clear
how forecasts are obtained from the observed series
Y1,Y2, . . . ,Yt .

I For models with MA terms, the noise terms appear in the
forecasts.

I Recall that for any invertible ARIMA process, we can write it
in terms of an infinite sum of AR terms:
Yt = π1Yt−1 + π2Yt−2 + · · ·+ et .

I Changing t to t + 1, we have:
Yt+1 = π1Yt + π2Yt−1 + · · ·+ et+1, and taking conditional
expectations of both sides (given Y1,Y2, . . . ,Yt), we have:

Ŷt(1) = π1Yt + π2Yt−1 + · · ·

Hitchcock STAT 520: Forecasting and Time Series



EWMA in the IMA(1, 1) Model

I In the IMA(1, 1) model where Yt = Yt−1 + et − θet−1, the
π-weights are

πj = (1− θ)θj−1 for j ≥ 1.

I Thus the one-step-ahead forecast, called an exponentially
weighted moving average (EWMA), is

Ŷt(1) = (1− θ)Yt + (1− θ)θYt−1 + (1− θ)θ2Yt−2 + · · ·

I These weights decrease exponentially, and by summing a
geometric series, we can see that they sum to 1.

I We can write this in a recursive updating formula as
Ŷt(1) = (1− θ)Yt + θŶt−1(1).
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Example of Forecasting with the IMA(1, 1) Model

I In practice, if our model specification shows that an IMA(1, 1)
model is appropriate for our data, we can estimate θ (and the
smoothing constant, 1− θ) in the usual way and compute an
EWMA forecast using this formula.

I See the R example of forecasting the logged oil price data
with an IMA(1, 1) model and the sarima.for function.
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Forecasting with Differenced Data

I If our model involves taking first differences to achieve
stationarity, we could forecast future values by either

1. forecasting the original nonstationary series (as we did in the
IMA(1, 1) example with the logged oil price data), or

2. forecasting the stationary differenced series Wt = Yt − Yt−1

and reversing the differencing by summing the results to get
the forecasts in the original terms.

I Both methods lead to exactly the same forecasts, since
differencing is a linear operation.

I This fact also applies to differences of any order.
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Forecasting with Log-transformed Data

I Often we choose to model the natural logarithms of the
original data.

I Let {Yt} denote the original series and let Zt = log(Yt).

I Then the (back-transformed) minimum mean square error
forecast of Zt+` is NOT the minimum mean square error
forecast of Yt+`, since

E [Yt+1|Yt ,Yt−1, . . . ,Y1] ≥ exp[E (Zt+1|Zt ,Zt−1, . . . ,Z1)].

I However, consider that if Zt is normally distributed, then Yt

must have had a skewed distribution (specifically, a log-normal
distribution).
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More on Forecasting with Log-transformed Data

I For this skewed-right distribution, the mean absolute error is a
better criterion, and the median of the conditional distribution
(given the observed data) may be considered optimal.

I And since Zt is normal, this median of its conditional
distribution equals the mean of its conditional distribution.

I And
E [Zt ] = median[Zt ] = median[log(Yt)] = log[median(Yt)].

I So getting the forecast Ẑt(`) in the usual way and then using

eẐt(`) as the forecast for Yt+` is justified as minimizing the
mean absolute error with respect to the distribution of Yt .
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Options for Forecasting with Nonstationary Processes

I Recall that when our original observed time series is
nonstationary, two important approaches to “achieve
stationarity” are detrending or differencing.

I In some cases, we could use either approach to forecast future
values (say, at time t + `) of a nonstationary series.

I We could (1) estimate a trend model and obtain the
detrended (residual) series based on that; (2) fit a stationary
ARMA model to the detrended data (if the detrended series is
not simply white noise); (3) forecast the value of the
detrended series at time t + ` using our usual ARMA
forecasting technique; and (4) add that to the prediction of
the trend model at time t + `.
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Other Option for Forecasting with Nonstationary Processes

I The other approach would just be to use a ARIMA model with
differencing on the original series and forecast based on that
(including a constant term in the ARIMA model if needed).

I This latter approach with the ARIMA model is simpler and
usually works better, unless there is some clear trend in the
series that differencing cannot handle.

I See the chicken price example in R for an example of both
approaches.
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Simulating Future Values of a Time Series

I Note the forecast of Yt+` is an expected value of that future
observation (given Y1, . . . ,Yt).

I Sometimes we may be interested in using our chosen model to
simulate random realizations of the process (random variables,
NOT an expected value) for one or more future time points.

I The simulate function in the forecast package in R can
randomly simulate such future observations of the process,
based on the chosen model.

I Note that you can think of the forecast Ŷt(`) as
approximately the average of many, many such simulated
future values of the series at time t + ` (see plots in R).
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