Chapter 2: Random Variables

Defn. A random variable (r.v.) is a function that maps the set of outcomes in the sample space to a set of real numbers.

Example 1 (two dice): Let the r.v. X be the sum of two fair dice. Then X is the function:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>X</th>
</tr>
</thead>
</table>

Defn. A discrete r.v. is one that takes on a finite or countably infinite number of values.
Defn: A **continuous r.v.** is one that takes on a continuum of values.

Example 2: If the r.v. X measures the lifetime of a part, then X is

Defn: The **cumulative distribution function (cdf)** of a r.v. X is defined as:

Note: $F(b)$ is a nondecreasing function of b.

$$
\lim_{b \to -\infty} F(b) = \quad \text{and} \quad \lim_{b \to \infty} F(b) =
$$

Also: $P(a < X \leq b) =$

2.2 **Discrete Random Variables**

Defn. The **probability mass function (pmf)** of a discrete r.v. X is
Note \(p(a) \) is positive for a finite or countable number of values \(a \). If \(X \) can take on values \(x_1, x_2, \ldots \), then \(\sum_{i=1}^{\infty} p(x_i) = \)

- The cdf of a discrete r.v. \(X \) is
 \[F(a) = \sum_{\text{all } x_i \leq a} p(x_i) \]

2.3 Continuous Random Variables

- The probability density function (pdf) of a continuous r.v. \(X \) is a nonnegative function \(f(x) \) such that

 for any subset \(B \) of the real line.

 Note \(P(a \leq X \leq b) = \)

 and \(\int_{-\infty}^{\infty} f(x) \, dx = \)
The cdf of a continuous r.v. X is and

Note that for a small $\epsilon > 0$,

2.4 Expectation of a Random Variable

- If X is a discrete r.v. with pmf $p(x)$, then the expected value of X is

- If X is a continuous r.v. with pdf $f(x)$, then the expected value of X is
Expectation of a Function of a r.v.

- If \(g(X) \) is any function of a r.v. \(X \), then

\[
E[aX + b] = \]

for any constants \(a \) and \(b \).

- The variance of \(X \) is defined as

2.6 **Moment Generating Functions**

Defn. The moment generating function (mgf) of a r.v. \(X \) is denoted \(\phi(t) \) and defined as:
Note: The m-th derivative of $\phi(t)$, evaluated at $t=0$, equals $E[X^m]$, which is called the m-th moment of X.

So

The mgf of a r.v. uniquely determines its distribution.
- These common distributions are all familiar from STAT 511.
- Note the parameterization of the exponential and gamma here is different than in STAT 511:
 - Here, the rate parameter λ is the same as $\frac{1}{\beta}$ where β was the scale parameter in the gamma.
 - The shape parameter of the gamma is here denoted n (we used α in STAT 511).

2.5 Jointly Distributed r.v.'s

Sometimes we are interested in probabilities involving more than one r.v.

Defn: If X and Y are r.v.'s, the joint cdf of X and Y is