4.6 Mean Time Spent in Transient States

- Consider a finite state Markov chain.
- Number the states so that
 is the set of transient states.
- Let

be the matrix with transition probabilities from transient states into transient states.

- This is not a full transition probability matrix (its rows do not all sum to 1).
- For transient states i and j, let S_{ij} be the expected number of time periods that the chain is in j, given that it starts in i.
Define \[S_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \]

Then

Note we need to sum over only the transient states \(k = 1, \ldots, t \) since the chain cannot go from a recurrent state to a transient state. Why not?

Let the matrix \(S \) contain all \(\{ S_{ij} \} \), \(i, j = 1, \ldots, t \):

\[
S = \]

- Note that in matrix notation,

- So given P_T, the S_{ij} values are easily calculated.

Roulette Example again: What is the expected amount of time the gambler has 80?

- Note letting 1 unit $= 10$,

$$P_T = \ldots$$

- It is easy to calculate $(I-P_T)^{-1}$ in R.
- We want
- What is the expected amount of time the gambler has 20?

- Note for transient states i and j, f_{ij} is the probability the chain ever enters j given that it starts in i.

- Conditioning on whether the chain enters j, we have:
These probabilities can be found from S, which can be found from P_T.

Previous Example: What is the probability the roulette gambler ever has exactly 90?

What is the expected amount of time the gambler plays the game?