Chapter 6: Continuous-Time Markov Chains

- In Chapter 4, we studied Markov chains \(\{X_n\} \) with a discrete index set \(n = 0, 1, 2, \ldots \).
- We now study continuous-time Markov chains \(\{X(t), t \geq 0\} \) in which the index set is all non-negative real numbers.
- These processes have the Markovian property: Their future behavior depends only on the present, not the past.

6.2 Continuous-Time Markov Chains

Defn: A stochastic process \(\{X(t), t \geq 0\} \) whose state space is the set of non-negative integers, is a continuous-time Markov chain if
for all $s, t \geq 0$ and all $i, j, x(u), 0 \leq u \leq s$:

- Hence the conditional distribution of the process at time $t+s$ depends only on the state at time s, for all $s, t \geq 0$.

- If $P[X(t+s) = j \mid X(s) = i]$ does not depend on s, then the chain has

 transition probabilities.

Note: If the chain enters state i, let T_i denote the amount of time it spends in i before transitioning to a new state.

- By the Markovian property, future behavior only depends on where the chain is currently.
Therefore:

- This implies that \(T_i \) is ______ and so it must be distributed as ______.

- Hence we can alternately define a continuous-time Markov chain as a process which, when it enters some state \(i \):

 (1)

 and (2)

- Note that which state \(j \) is visited after state \(i \) cannot depend on the amount of time spent in state \(i \) (otherwise, this would violate the Markovian property).
Example: A drive-through restaurant has two windows, one for ordering food and one for paying and picking up the food. Suppose the service times (in minutes) at windows 1 and 2 are independent exponential r.v.'s, with rates 1 and $\frac{1}{3}$, respectively. Suppose customers arrive at the restaurant according to a Poisson process with rate $\lambda = 0.5$ per minute, and that customers will leave immediately if either window is occupied by another customer. Model this with a continuous-time Markov chain.
6.3 Birth and Death Processes

- Consider a system in which the state at time t is the number of people n in the system at time t.

- Suppose further:
 (i) people enter the system with interarrival times that are exponential with rate λ_n.
 (ii) people depart the system with interdeparture times that are exponential with rate μ_n.
 (iii) arrivals and departures are independent.
- This process $\{X(t)\}$ is a birth and death process with arrival (or birth) rates $\{\lambda_n\}$ and departure (or death) rates $\{\mu_n\}$.

- The state space of $\{X(t)\}$ is:

- What are the $\{v_j\}$ and $\{p_{ij}\}$ of this process?
- Note that a **Poisson process** is simply a birth and death process with

- A **pure birth** process is a birth and death process with

- So the Poisson process is

- Another pure birth process is the **Yule process**; it has

- The Yule process arises if each of n individuals has exponential birth rate λ, making the birth rate of the total population _____.