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Chapter 4: Factor Analysis

• In many studies, we may not be able to measure directly the variables of interest.

• We can merely collect data on other variables which may be related to the variables

of interest.

• Goal of factor analysis (FA) is to relate the unobservable latent variables of interest

to the observed manifest variables.

• The technique used to relate the latent variables (often called factors) to the manifest

variables is similar to multiple regression.

• The estimation of the regression coefficients (called loadings in this context) is less

straightforward, however.
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A Factor Analysis Example: The Wechsler Adult Intelligence Study

• The Wechsler Adult Intelligence Scale (WAIS) series of tests measures participants’

scores in 11 different tests.

• The multivariate data set consisted of 13 variables: these 11 test scores, plus “age”

and “years of education.”

• Based on the observed variables, we may want to identify certain underlying factors

that cause the individuals to differ.

• Is there a “general intelligence” factor? Is there a “language ability” factor? Is there

a “math ability” factor?

• Factor analysis can help us answer these questions.
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Our Factor Analysis Model

• Our factor analysis model assumes that we can explain the correlations among the

manifest variables through these variables’ relationships with the latent variables.

• The q manifest variables are denoted x1, x2, . . . , xq.

• The k latent variables, or factors, (where k < q) are denoted f1, f2, . . . , fk.

• We relate them via a series of regression equations:

x1 = λ11f1 + λ12f2 + · · · + λ1kfk + u1

x2 = λ21f1 + λ22f2 + · · · + λ2kfk + u2

...

xq = λq1f1 + λq2f2 + · · · + λqkfk + uq

• The λij values (called loadings) show how much each manifest variable depends

on the j-th factor.

• The loading values help in the interpretation of each factor.
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Our Factor Analysis Model (continued)

• We can write the regression equations in matrix notation: x = Λf + u, where

Λ =

















λ11 · · · λ1k

...
. . .

...

λq1 · · · λqk

















and f = (f1, . . . , fk)
′

, u = (u1, . . . , uq)
′

.

• The model assumes u1, . . . , uq are mutually independent and are independent of

the f1, . . . , fk.

• The factors are unobserved, so we may assume they have mean 0 and variance 1,

and that they are uncorrelated with each other.
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Partitioning the Variance of the Data Vectors

The communality h2

i is the variability in manifest variable xi shared with the other

variables (via the factors) and ψi is the specific variance, not shared with the other

variables.
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Covariance of the Data Vectors

Hence the population covariance matrix Σ for (x1, x2, . . . , xq) is Σ = ΛΛ
′

+ Ψ,

where Ψ = diag(ψi).
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Factor Analysis in Practice

• If this decomposition of the covariance matrix holds, then the k-factor model is

correct.

• In practice, Σ is unknown and is estimated by S (or the sample correlation matrix

R will be used).

• So we need to find estimates of Λ and Ψ so that the sample covariance matrix can

be decomposed in this way: S ≈ Λ̂Λ̂

′

+ Ψ̂.

• In practice, we also don’t know the true value of k, the number of factors.
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Methods of Estimating the Factor Analysis Model:

Principal Factor Analysis

• The Principal Factor Analysis approach to estimation relies on estimating the

communalities.

• It uses the reduced covariance matrix S
∗ = S − Ψ̂.

• The diagonal elements of S∗ are s2

i − ψ̂i = ĥ2

i , the (estimated) communality for

the i-th variable.

• We could standardize the variables, which amounts to using the reduced correlation

matrix R
∗ = R − Ψ̂.
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Estimating the Communalities

• To estimate the h2

i values, we cannot use the factor loadings, since those have not

been estimated yet.

• A more straightforward approach (when working with the correlation matrix) is one

of the following:

1. Initially let ĥ2

i equal the R2 value of a regression of xi against the other manifest

variables. This is 1 − 1

rii , where rii is the i-th diagonal element of R−1.

2. Initially let ĥ2

i equal the largest absolute correlation coefficient between xi and

any other manifest variable.

• In both of these approaches, a stronger association between xi and the other vari-

ables will lead to a higher communality value ĥ2

i .

• When working with the covariance matrix, we could base the communality estimates

on the diagonal elements of S−1 rather than R
−1.
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Using the Initial Communality Estimates

• Once we have our initial ĥ2

i values, we can calculate S
∗ (or R∗).

• We perform a principal components analysis on S
∗ (or R∗) and the first k

eigenvectors contain the estimates of the first k factor loadings.

• These estimated loadings λ̂ij can be used to obtain new communality estimates:

ĥ2

i =
k

∑

j=1

λ̂2

ij

• We can re-form S
∗ (or R∗) with the revised communality estimates, and repeat the

process until the communality estimates converge.

• This works well unless the communality estimate becomes larger than the manifest

variable’s total variance, implying a negative specific variance, an impossibility.
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Maximum Likelihood Factor Analysis

• Maximum likelihood (ML) is a general method of estimating parameters in a

statistical model.

• Classical ML requires an assumption about the form of the distribution of the data.

• If we can assume we have multivariate normal data, we can motivate a maximum

likelihood estimation of our k-factor model.

• Recall that the observed sample covariance matrix is S and, under the factor

analysis model, the true covariance matrix is Σ = ΛΛ
′

+ Ψ.

• The goodness-of-fit of the k-factor model can be judged by a “distance” measure F

between the sample covariance matrix and the predicted covariance matrix under

the model.
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The Distance Measure and Maximum Likelihood

• Let F = ln |ΛΛ
′

+ Ψ| + trace(S[ΛΛ
′

+ Ψ]−1) − ln |S| − q.

• This distance measure equals zero if S = ΛΛ
′

+ Ψ.

• F is large when S is far from ΛΛ
′

+ Ψ.

• We can calculate (for a given data set) the elements of Λ and Ψ that make F as

small as possible.

• This implies we have estimates of the communalities h2

1
, . . . , h2

q and the specific

variances ψ1, . . . , ψq.

• Under the assumption of multivariate normality, the likelihood L = −0.5nF plus a

function of the data.

• Hence minimizing F is equivalent to maximizing L.

• This method could also produce negative estimates for the specific variances.
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Estimating the Number of Factors

• With factor analysis, the choice of the number of factors k is critical.

• If we use k + 1 factors, we will get different factors and loadings than if we use k

factors.

• With too few factors, there will be too many high loadings.

• With too many factors, the loadings will be spread out too much over the factors, and

the factors will be difficult to interpret.
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Methods for Estimating the Number of Factors

• A subjective approach is to try various choices of k and pick the one that gives the

most interpretable result — this is probably too subjective.

• Could use the scree diagram as in PCA, but the eigenvalues are not as directly

interpretable in factor analysis.

• When using maximum likelihood, we can use a formal sequence of hypothesis tests

to help determine k.

• We use the test statistic U = n
′

min(F ), where n
′

= n+1−(2q+5)/6−2k/3.

• If the k-factor model is appropriate, this test statistic has a large-sample χ2 distribu-

tion with degrees of freedom (q − k)2/2 − (q + k)/2.

• Typically we begin with a small value of k, and increase k by 1 sequentially.

• If at any stage, the U has a non-significant P-value, we choose that value of k.

• If at any stage the degrees of freedom go to zero, the factor analysis model may be

inappropriate.

STAT J530 Page 14


