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Chapter 5: Multidimensional Scaling and Correspondence Analysis

• Recall that we used distances to measure how different multivariate observations

were from each other.

• In Chapter 1, we took a multivariate data set (a set of q-dimensional vectors) and

calculated distances between pairs of vectors.

• Both multidimensional scaling and correspondence analysis are techniques related

to distances.

• Multidimensional Scaling can be viewed as a way of generating a geometric

representation of some observed proximity matrix.

• The proximity matrix could contain similarity values for pairs of observations or

dissimilarity values, but we will typically work with dissimilarities (i.e., distances).

• With multidimensional scaling, we begin with a distance matrix and produce a

“possible data set” that could have yielded such a distance matrix.
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Classical Multidimensional Scaling (MDS)

• Given a n×n distance matrix, the goal is to construct a “map” (geometrical model)

containing multivariate points x1,x2, . . . ,xn.

• Each point represents one of the individuals in the original data set.

• Two goals in determining this map:

1. What is an appropriate dimension q for the points on the map?

2. Where should the points be placed on the map in order to “fit” the observed

distances well?
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Multidimensional Scaling Example

• A subject was asked to taste 10 colas, and, for each pair of colas, to rate how

different the two colas were, on a scale of 0 to 100.

• A “dissimilarity” of 0 would mean the two colas tasted exactly the same, and a

dissimilarity of 100 would mean the two colas tasted completely different.

• A 10× 10 distance matrix can be constructed based on the subject’s judgments.

• Multidimensional scaling allows us to represent the 10 colas as points in a q-dimensional

space and visually examine the similarities and differences among the colas.
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Nonuniqueness of the Coordinates

• Note that there is no uniquely best solution for where to place the points on the map.

• If we have a set of coordinates that “best” fits the distances, we can get an equally

good set of coordinates by shifting, rotating, or reflecting the points in the q-dimensional

space.

• Partial Solution: We can constrain the solution so that the mean vector of the points

lies at the origin (0, 0, . . . , 0)
′
.

• We can then choose the rotation (via some orthogonal transformation) of the points

so that the solution is most easily interpreted.
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Mathematics behind Classical MDS

• First assume our distance matrix D contains Euclidean distances derived from an

(unknown) data matrix X.

• Define the n× n matrix B = XX
′
.

• The squared Euclidean distances d2ij between the rows of X can be written in terms

of the elements of B:

d2ij = bii + bjj − 2bij.

• Constrain x̄ to be the zero vector; then summing over i, over j, and over i and j

gives a series of equations with which we can solve for the bij values in terms of the

d2ij values:

bij = −0.5
[
d2ij − n−1 ∑

j

d2ij − n−1 ∑
i

d2ij + n−2 ∑
i

∑
j

d2ij

]
.

• Since we know the distances dij , we can write the whole matrix B.
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Mathematics behind Classical MDS (Continued)

• Now we must factor B to obtain the matrix of coordinate values X.

• We can use the singular value decompositionB = VΛV
′
, whereΛ is the diagonal

matrix of eigenvalues of B, and the columns of V are the orthonormal eigenvectors

of B.

• If the original X is n× q and of full rank, then the last n− q of the eigenvalues of

B are zero.

• Hence B = V1Λ1V
′

1, where Λ1 and V1 contain the nonzero eigenvalues and the

corresponding eigenvectors.

• Then let X = V1Λ
1/2
1 , so that B = XX

′
as needed.

STAT 530 Page 6



University of South Carolina Hitchcock

Some Practical Considerations with Classical MDS

• We can reduce the dimension of the solution by restricting attention to the k largest

eigenvalues.

• If the distances are not Euclidean, B is not positive definite and some eigenvalues

of B will be negative.

• In this case, we can still choose the dimension corresponding to the k largest

positive eigenvalues.

• See the trace criterion or magnitude criterion suggested by Sibson (1979) on page

109-110 of the book.
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MDS on Euclidean Distances between Multivariate Observations

• In some situations, the distance matrix may be obtained by calculating Euclidean

distances between observed q-variate observations.

• Question: If we already had the data set, why use MDS to create an “artificial data

set” that reflects the distance structure?

• Perhaps the original number of variables is large, and we want our “map” to be a

lower-dimensional representation of the data.

• The map would consist of k-dimensional points, with k < q — the goal is dimension

reduction, similar to PCA.

• In fact, when the distances in MDS are Euclidean distances derived from a data

matrix, the coordinates of the MDS solution equal the PC scores from using PCA on

S.

• This usage of MDS is sometimes called principal coordinates analysis.
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Determining the Amount of Data Reduction

• When using MDS to “reduce the dimensionality” from q to k, what is a proper choice

of k?

• If there are k “relatively large” eigenvalues ofB, this is evidence that a k-dimensional

solution is appropriate.

• We could base the choice of k on the sizes of the first few eigenvalues λ1, λ2 . . .

(listed in decreasing order).

• We could calculate (for each possible k):

Pk =

∑k
i=1 |λi|∑n
i=1 |λi|

(or a similar measure with the absolute values replaced by squares).

• Values of k that yield a Pk near 1 (say, at least 0.8) would give a good

representation.

• The cmdscale function in R prints this criterion when the eig=T option is

specified.
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Other Methods of Determining k

• Another option: For each possible value of k, try to minimize

ϕ =
∑
r,s
(d2rs − d̂2rs),

where d2rs is the Euclidean distance between the r-th and s-th observations in the

(full) q-dimensional space, and d̂2rs is the Euclidean distance between the r-th and

s-th observations in the (reduced) k-dimensional space.

• As k increases, the minimum value of ϕ will decrease monotonically.

• We can plot this minimum against the various values of k and pick the k value at

the “elbow” of the plot.

• Takane et al. (1977) suggested a scaled version of ϕ called SStress that always lies

between 0 and 1:

SStress =

[∑
r<s(d

2
rs − d̂2rs)

2∑
r<s d4rs

]1/2
• Values of SStress below 0.1 represent a good fit.
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Nonmetric Multidimensional Scaling

• Sometimes we may not be able to assign precise numerical dissimilarities to pairs of

observations, but we could rank the pairs of observations in terms of how dissimilar

they are.

• Or we may not trust the exact numerical dissimilarities, but we believe basically in

their ordering.

• Nonmetric multidimensional scaling (or isometric multidimensional scaling) uses

only the rank orders of the distances to arrive at an MDS solution.

• The R function isoMDS in the MASS package performs nonmetric scaling.
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Correspondence Analysis

• A two-way contingency table presents sample values for two categorical variables.

• Commonly, we test whether the two classifications are independent or dependent

using a chi-squared test.

• Correspondence Analysis (CA) can be used to supplement such a chi-squared test.

• It presents the categorical data graphically, based on a decomposition of the chi-

squared test statistic using chi-squared distances.

• The two categorical variables are often called the row variable and the column

variable, based on their placement in the contingency table.

• Correspondence analysis finds and plots coordinates that represent the categories

of both the row and column variables.

• We can then interpret the pattern of association based on the plot.
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Contingency Table Notation

• Suppose the counts in a r × c contingency table are represented as follows:

1 2 · · · c Row Totals

1 n11 n12 · · · n1c n1·

2 n21 n22 · · · n2c n2·
...

...
... . . . ...

...

r nr1 nr2 · · · nrc nr·

Column Totals n·1 n·2 · · · n·c N
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Chi-Squared Distances

• We can then define a r × c table of column proportions, with entries p
(col)
ij , i =

1, . . . , r, j = 1, . . . , c, where

p
(col)
ij = nij/ni·

• We can also define a r × c table of row proportions, with entries p
(row)
ij , i =

1, . . . , r, j = 1, . . . , c, where

p
(row)
ij = nij/n·j

• The chi-squared distance between two columns is a weighted Euclidean distance

(with the rarer column categories weighted more heavily).

• The chi-squared distance between two rows is a weighted Euclidean distance (with

the rarer row categories weighted more heavily).

• Page 105 gives formulas for the squared chi-squared distances between rows and

between columns.
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Plotting Coordinates

• We perform a classical MDS on the distance matrix for columns and a classical MDS

on the distance matrix for rows.

• We plot the first two coordinates for column categories and the first two coordinates

for row categories on the same axis.

• Each point should be labeled according to its category, for ease of interpretation.

• Note: In correspondence analysis, an exact representation of the chi-squared

distances in K-dimensional space is possible, where K = min(r − 1, c− 1).

• Thus if both the number of rows and the number of columns are greater than 3, an

exact 2-D representation is not possible.

• The 2-dimensional representation in that case is only an approximation.

• We could check the fit of the 2-dimensional representation using measures such as

Pk or SStress.
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Interpreting the Correspondence Analysis

• In a 2-dimensional plot, all row categories and all column categories are labeled on

the plot.

• Two row categories that are near each other on the plot would have similar

conditional distributions across the columns.

• Two column categories that are close together on the plot would have similar profiles

down the rows.

• A row category and a column category that are close together on the plot would tend

to appear together more often than would be expected under independence.
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Interpreting the Correspondence Analysis (Continued)

• A one-dimensional solution (in which each category has a single coordinate value)

can often yield useful interpretations as well.

• When a row category and a column category have coordinates that are large in

magnitude and have the same sign, this row-column combination tends to appear

more often than would be expected under independence.

• When a row category and a column category have coordinates that are large in

magnitude and have different signs, this row-column combination tends to appear

less often than would be expected under independence.

• When a row category and a column category have coordinates whose product is

near zero, this row-column combination tends to appear about as often as would be

expected under independence.
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